An evaluation of the possibilities of using turboexpanders at pressure regulator stations
Abstract
Natural gas in Poland is transported by onshore pipelines with a maximum operating pressure of up to 8.4 MPa. The gaspressure is then reduced to 1.6 MPa or 0.4 MPa for delivery to regional/local distribution networks or to end-user installations.The pressure reduction is usually performed by a pressure regulator. Pressure reduction can also be achieved throughexpansion of the gas at the turboexpander, which can be harnessed to produce electricity from the recovered mechanicalenergy of the gas. The main objective of this study is to investigate the factors influencing the efficiency of the gas expansionprocess and to carry out a feasibility study involving the application of turboexpanders at selected natural gas pressureregulator stations belonging to the Polish transmission system operator Gaz System S.A.References
[1] J. Pozivil, Use of expansion turbines in natural gas pressure reduction
stations, Acta Montanistica Slovaca 9 (3) (2004) 258–260.
[2] W. Kostowski, The possibility of energy generation within the conventional
natural gas transport system, Strojarstvo 52 (4) (2010) 429–440.
[3] D. Borelli, F. Devia, M. M. Brunenghi, C. Schenone, A. Spoladore,
Waste energy recovery from natural gas distribution network: Celsius
project demonstrator in Genoa, Sustainability 7 (12) (2015) 16703–
16719. doi:10.3390/su71215841.
URL http://dx.doi.org/10.3390/su71215841
[4] M. A. Neseli, O. Ozgener, L. Ozgener, Energy and exergy analysis
of electricity generation from natural gas pressure reducing
stations, Energy Conversion and Management 93 (2015) 109–120.
doi:10.1016/j.enconman.2015.01.011.
URL http://dx.doi.org/10.1016/j.enconman.2015.01. 011
[5] W. J. Kostowski, S. Usón,W. Stanek, P. Bargiel, Thermoecological cost
of electricity production in the natural gas pressure reduction process,
Energy 76 (2014) 10–18. doi:10.1016/j.energy.2014.01.045.
URL http://dx.doi.org/10.1016/j.energy.2014.01.045
[6] S. Khanmohammadi, P. Ahmadi, K. Atashkari, R. K. Kamali, Progress
in Clean Energy, Volume 1 Analysis and Modeling, Springer International
Publishing, Cham, 2015, Ch. Design and Optimization of an Integrated
System to Recover Energy from a Gas Pressure Reduction
Station, pp. 89–107. doi:10.1007/978-3-319-16709-1_6.
URL http://dx.doi.org/10.1007/978-3-319-16709-1_6
[7] M. Farzaneh-Gord, S. Izadi, M. Deymi-Dashtebayaz, S. I. Pishbin,
H. Sheikhani, Optimizing natural gas reciprocating expansion engines
for town border pressure reduction stations based on AGA8 equation
of state, Journal of Natural Gas Science and Engineering 26 (2015)
6–17. doi:10.1016/j.jngse.2015.05.025.
URL http://dx.doi.org/10.1016/j.jngse.2015.05.025
[8] T. He, Y. Ju, Design and optimization of natural gas liquefaction
process by utilizing gas pipeline pressure energy,
Applied Thermal Engineering 57 (1-2) (2013) 1–6.
doi:10.1016/j.applthermaleng.2013.03.044.
URL http://dx.doi.org/10.1016/j.applthermaleng.
2013.03.044
[9] M. T. Jelodar, H. Rastegar, M. Pichan, Induction generator voltage improvement
using a new control strategy for turbo-expander driving systems,
International Journal of Electrical Power & Energy Systems 64
(2015) 1176–1184. doi:10.1016/j.ijepes.2014.09.003.
URL http://dx.doi.org/10.1016/j.ijepes.2014.09.003
[10] A. Osiadacz, F. E. Uilhoorn, M. Chaczykowski, Computation of hydrate
phase equilibria and its application to the Yamal-Europe gas
pipeline, Petroleum Science and Technology 27 (2) (2009) 208–225.
doi:10.1080/10916460701700336.
URL http://dx.doi.org/10.1080/10916460701700336
[11] A. Osiadacz, F. Uilhoorn, M. Chaczykowski, Assessing hydrate formation
in natural gas pipelines under transient operation, Archives of Mining
Sciences 58 (1) (2013) 131–144. doi:10.2478/amsc-2013-0009.
URL http://dx.doi.org/10.2478/amsc-2013-0009
[12] P. Bargiel, W. Kostowski, S. Uson, An approach to enhance combined
cycle performance by integration with a gas pressure reduction station,
Journal of Power Technologies 95 (1) (2015) 79–89.
[13] W. J. Kostowski, S. Usón, Thermoeconomic assessment of a natural
gas expansion system integrated with a co-generation unit, Applied
Energy 101 (2013) 58–66. doi:10.1016/j.apenergy.2012.04.002.
URL http://dx.doi.org/10.1016/j.apenergy.2012.04. 002
[14] W. J. Kostowski, S. Usón, Comparative evaluation of a natural gas
expansion plant integrated with an IC engine and an organic Rankine
cycle, Energy Conversion and Management 75 (2013) 509–516.
doi:10.1016/j.enconman.2013.06.041.
URL http://dx.doi.org/10.1016/j.enconman.2013.06. 041
[15] V. Farzaneh-Kord, A. Khoshnevis, A. Arabkoohsar, M. Deymi-
Dashtebayaz, M. Aghili, M. Khatib, M. Kargaran, M. Farzaneh-Gord,
Defining a technical criterion for economic justification of employing
CHP technology in city gate stations, Energy 111 (2016) 389–401.
doi:10.1016/j.energy.2016.05.122.
URL http://dx.doi.org/10.1016/j.energy. 2016.05.122
[16] C. Howard, P. Oosthuizen, B. Peppley, An investigation of
the performance of a hybrid turboexpander-fuel cell system
for power recovery at natural gas pressure reduction stations,
Applied Thermal Engineering 31 (13) (2011) 2165–2170.
doi:10.1016/j.applthermaleng.2011.04.023.
URL http://dx.doi.org/10.1016/j.applthermaleng.
2011.04.023
[17] A. Darabi, A. Shariati, R. Ghanaei, A. Soleimani, Economic assessment
of a hybrid turboexpander-fuel cell gas energy extraction plant,
Turkish Journal of Electrical Engineering & Computer Sciences 24
(2016) 733–745. doi:10.3906/elk-1303-7.
[18] A. Arabkoohsar, L. Machado, R. Koury, Operation analysis of a
photovoltaic plant integrated with a compressed air energy storage
system and a city gate station, Energy 98 (2016) 78–91.
doi:10.1016/j.energy.2016.01.023.
URL http://dx.doi.org/10.1016/j.energy.2016.01.023
[19] R. Ghezelbash, M. Farzaneh-Gord, H. Behi, M. Sadi, H. S. Khorramabady,
Performance assessment of a natural gas expansion plant integrated
with a vertical ground-coupled heat pump, Energy 93 (2015)
2503–2517. doi:10.1016/j.energy.2015.10.101.
URL http://dx.doi.org/10.1016/j.energy.2015.10.101
[20] M. Farzaneh-Gord, R. Ghezelbash, A. Arabkoohsar, L. Pilevari,
L. Machado, R. Koury, Employing geothermal heat exchanger in natural
gas pressure drop station in order to decrease fuel consumption,
Energy 83 (2015) 164–176. doi:10.1016/j.energy.2015.02.093.
URL http://dx.doi.org/10.1016/j.energy.2015.02. 093
[21] R. Ghezelbash, M. Farzaneh-Gord, M. Sadi, Performance assessment
of vortex tube and vertical ground heat exchanger
in reducing fuel consumption of conventional pressure drop
stations, Applied Thermal Engineering 102 (2016) 213–226.
doi:10.1016/j.applthermaleng.2016.03.110.
URL http://dx.doi.org/10.1016/j.applthermaleng.
2016.03.110
[22] E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference
Database 23: Reference Fluid Thermodynamic and Transport
Properties-REFPROP, National Institute of Standards and Technology,
Gaithersburg (2013).
[23] E. K. Ardali, E. Heybatian, Energy regeneration in natural gas pressure
reduction stations by use of gas turbo expander; evaluation of available
potential in Iran, in: Proceedings of the 24th World Gas Conference,
Buenos Aires, Argentina, International Gas Union, 2009, pp. 5–9.
stations, Acta Montanistica Slovaca 9 (3) (2004) 258–260.
[2] W. Kostowski, The possibility of energy generation within the conventional
natural gas transport system, Strojarstvo 52 (4) (2010) 429–440.
[3] D. Borelli, F. Devia, M. M. Brunenghi, C. Schenone, A. Spoladore,
Waste energy recovery from natural gas distribution network: Celsius
project demonstrator in Genoa, Sustainability 7 (12) (2015) 16703–
16719. doi:10.3390/su71215841.
URL http://dx.doi.org/10.3390/su71215841
[4] M. A. Neseli, O. Ozgener, L. Ozgener, Energy and exergy analysis
of electricity generation from natural gas pressure reducing
stations, Energy Conversion and Management 93 (2015) 109–120.
doi:10.1016/j.enconman.2015.01.011.
URL http://dx.doi.org/10.1016/j.enconman.2015.01. 011
[5] W. J. Kostowski, S. Usón,W. Stanek, P. Bargiel, Thermoecological cost
of electricity production in the natural gas pressure reduction process,
Energy 76 (2014) 10–18. doi:10.1016/j.energy.2014.01.045.
URL http://dx.doi.org/10.1016/j.energy.2014.01.045
[6] S. Khanmohammadi, P. Ahmadi, K. Atashkari, R. K. Kamali, Progress
in Clean Energy, Volume 1 Analysis and Modeling, Springer International
Publishing, Cham, 2015, Ch. Design and Optimization of an Integrated
System to Recover Energy from a Gas Pressure Reduction
Station, pp. 89–107. doi:10.1007/978-3-319-16709-1_6.
URL http://dx.doi.org/10.1007/978-3-319-16709-1_6
[7] M. Farzaneh-Gord, S. Izadi, M. Deymi-Dashtebayaz, S. I. Pishbin,
H. Sheikhani, Optimizing natural gas reciprocating expansion engines
for town border pressure reduction stations based on AGA8 equation
of state, Journal of Natural Gas Science and Engineering 26 (2015)
6–17. doi:10.1016/j.jngse.2015.05.025.
URL http://dx.doi.org/10.1016/j.jngse.2015.05.025
[8] T. He, Y. Ju, Design and optimization of natural gas liquefaction
process by utilizing gas pipeline pressure energy,
Applied Thermal Engineering 57 (1-2) (2013) 1–6.
doi:10.1016/j.applthermaleng.2013.03.044.
URL http://dx.doi.org/10.1016/j.applthermaleng.
2013.03.044
[9] M. T. Jelodar, H. Rastegar, M. Pichan, Induction generator voltage improvement
using a new control strategy for turbo-expander driving systems,
International Journal of Electrical Power & Energy Systems 64
(2015) 1176–1184. doi:10.1016/j.ijepes.2014.09.003.
URL http://dx.doi.org/10.1016/j.ijepes.2014.09.003
[10] A. Osiadacz, F. E. Uilhoorn, M. Chaczykowski, Computation of hydrate
phase equilibria and its application to the Yamal-Europe gas
pipeline, Petroleum Science and Technology 27 (2) (2009) 208–225.
doi:10.1080/10916460701700336.
URL http://dx.doi.org/10.1080/10916460701700336
[11] A. Osiadacz, F. Uilhoorn, M. Chaczykowski, Assessing hydrate formation
in natural gas pipelines under transient operation, Archives of Mining
Sciences 58 (1) (2013) 131–144. doi:10.2478/amsc-2013-0009.
URL http://dx.doi.org/10.2478/amsc-2013-0009
[12] P. Bargiel, W. Kostowski, S. Uson, An approach to enhance combined
cycle performance by integration with a gas pressure reduction station,
Journal of Power Technologies 95 (1) (2015) 79–89.
[13] W. J. Kostowski, S. Usón, Thermoeconomic assessment of a natural
gas expansion system integrated with a co-generation unit, Applied
Energy 101 (2013) 58–66. doi:10.1016/j.apenergy.2012.04.002.
URL http://dx.doi.org/10.1016/j.apenergy.2012.04. 002
[14] W. J. Kostowski, S. Usón, Comparative evaluation of a natural gas
expansion plant integrated with an IC engine and an organic Rankine
cycle, Energy Conversion and Management 75 (2013) 509–516.
doi:10.1016/j.enconman.2013.06.041.
URL http://dx.doi.org/10.1016/j.enconman.2013.06. 041
[15] V. Farzaneh-Kord, A. Khoshnevis, A. Arabkoohsar, M. Deymi-
Dashtebayaz, M. Aghili, M. Khatib, M. Kargaran, M. Farzaneh-Gord,
Defining a technical criterion for economic justification of employing
CHP technology in city gate stations, Energy 111 (2016) 389–401.
doi:10.1016/j.energy.2016.05.122.
URL http://dx.doi.org/10.1016/j.energy. 2016.05.122
[16] C. Howard, P. Oosthuizen, B. Peppley, An investigation of
the performance of a hybrid turboexpander-fuel cell system
for power recovery at natural gas pressure reduction stations,
Applied Thermal Engineering 31 (13) (2011) 2165–2170.
doi:10.1016/j.applthermaleng.2011.04.023.
URL http://dx.doi.org/10.1016/j.applthermaleng.
2011.04.023
[17] A. Darabi, A. Shariati, R. Ghanaei, A. Soleimani, Economic assessment
of a hybrid turboexpander-fuel cell gas energy extraction plant,
Turkish Journal of Electrical Engineering & Computer Sciences 24
(2016) 733–745. doi:10.3906/elk-1303-7.
[18] A. Arabkoohsar, L. Machado, R. Koury, Operation analysis of a
photovoltaic plant integrated with a compressed air energy storage
system and a city gate station, Energy 98 (2016) 78–91.
doi:10.1016/j.energy.2016.01.023.
URL http://dx.doi.org/10.1016/j.energy.2016.01.023
[19] R. Ghezelbash, M. Farzaneh-Gord, H. Behi, M. Sadi, H. S. Khorramabady,
Performance assessment of a natural gas expansion plant integrated
with a vertical ground-coupled heat pump, Energy 93 (2015)
2503–2517. doi:10.1016/j.energy.2015.10.101.
URL http://dx.doi.org/10.1016/j.energy.2015.10.101
[20] M. Farzaneh-Gord, R. Ghezelbash, A. Arabkoohsar, L. Pilevari,
L. Machado, R. Koury, Employing geothermal heat exchanger in natural
gas pressure drop station in order to decrease fuel consumption,
Energy 83 (2015) 164–176. doi:10.1016/j.energy.2015.02.093.
URL http://dx.doi.org/10.1016/j.energy.2015.02. 093
[21] R. Ghezelbash, M. Farzaneh-Gord, M. Sadi, Performance assessment
of vortex tube and vertical ground heat exchanger
in reducing fuel consumption of conventional pressure drop
stations, Applied Thermal Engineering 102 (2016) 213–226.
doi:10.1016/j.applthermaleng.2016.03.110.
URL http://dx.doi.org/10.1016/j.applthermaleng.
2016.03.110
[22] E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference
Database 23: Reference Fluid Thermodynamic and Transport
Properties-REFPROP, National Institute of Standards and Technology,
Gaithersburg (2013).
[23] E. K. Ardali, E. Heybatian, Energy regeneration in natural gas pressure
reduction stations by use of gas turbo expander; evaluation of available
potential in Iran, in: Proceedings of the 24th World Gas Conference,
Buenos Aires, Argentina, International Gas Union, 2009, pp. 5–9.
Published
2017-12-26
How to Cite
OSIADACZ, Andrzej; CHACZYKOWSKI, Maciej; KWESTARZ, Malgorzata.
An evaluation of the possibilities of using turboexpanders at pressure regulator stations.
Journal of Power Technologies, [S.l.], v. 97, n. 4, p. 289--294, dec. 2017.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/966>. Date accessed: 14 dec. 2024.
Issue
Section
Energy Conversion and Storage
Keywords
pressure regulator, turboexpander, waste energy recovery, city-gate station, pressure let-down station
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).