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Abstract

Natural gas in Poland is transported by onshore pipelines with the maximum operating pressure of up to 8,4 MPa. The
gas pressure is then reduced to 1,6 MPa or 0,4 MPa for gas delivery to regional/local distribution networks or to the
end-user installations. The pressure reduction is usually performed by using pressure regulator. Pressure reduction can
also be achieved by the expansion of the gas at the turboexpander, which allows for the production of electricity from
the recovered mechanical energy of the gas. The main objective of this study is to investigate the factors influencing the
efficiency of the gas expansion process and to carry out a feasibility study involving the application of turboexpanders at
selected natural gas pressure regulator stations belonging to the Polish transmission system operator Gaz System S.A.

Keywords: pressure regulator, turboexpander, waste energy recovery, city-gate station, pressure let-down station

1. Introduction

Gas pressure regulating and metering station (city gate
station) consists of technological equipment and process
control systems for natural gas stream pressure reduction
and gas flow measurement. The process of gas pressure
reduction is usually performed by using pressure regulator
in the form of a throttling device, therefore the process is
accompanied by large energy dissipation resulting in sig-
nificant exergy losses of the gas stream.

Several authors studied the problem of low energy ef-
ficiency of pressure regulator stations [1, 2, 3, 4] due to
high economical and ecological cost of natural gas pres-
sure reduction process [5]. The well known solution for
the increase of energy efficiency of the pressure reduction
process is based on the application of gas turboexpander
[6] or reciprocating expansion engine [7] instead of pres-
sure regulator, and extracting mechanical energy from the
gas while reducing its pressure, i.e. the mechanical energy
of the gas is converted into shaft work, which can be used
directly [8] or subsequently transmitted to a generator to
produce electric energy [9].

The process of pressure reduction of the natural gas
at pressure regulator has also an undesired side effect of
the decrease in gas temperature, resulting from the Joule-
Thomson effect, which can cause vapour condensation or
hydrate formation [10, 11] leading to hydrate plugs in the
valve seat of the pressure regulator. These phenomena
have very unfavorable influence on pipelines and station’s
equipment, therefore preheating of the gas before it enters
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the pressure regulator is commonly adopted in high pres-
sure regulator stations. Natural-gas fired boilers are typi-
cally used for providing heat for the process of gas preheat-
ing in both pressure regulator and turboexpander applica-
tions; however, the effect of pressure reduction on tem-
perature during polytropic process (expansion) is stronger
compared to isenthalpic process (throttling), consequently
heat demands in turboexpander applications are exceeding
those in pressure regulator applications.

In recent years, research efforts are also undertaken
in pressure regulator stations to replace the traditional
systems of heat production by the gas boilers with co-
generation systems, including CHP units with gas turbine
[12], internal combustion engine [13, 14, 15] and fuel cell
[16, 6, 17]. Recent studies are also focused on integra-
tion of natural gas expansion plants with renewable energy
sources, including photovoltaic systems [18], heat pumps
[19], geothermal heat exchangers [20], and vortex tubes
[21]. The above-mentioned works are aimed at reducing
the primary energy demand for gas preheating in the pro-
cess of pressure reduction.

The objective of the present study is to evaluate the
feasibility of turboexpander application on a retrofit basis
in selected two real-life pressure regulator stations with sig-
nificantly different demand patterns, i.e. supplying gas to
municipal area and to the industrial customer. The station
delivering gas to municipal area has seasonal fluctuations
of gas flow rate caused by gas consumption for heating
purposes, while the station supplying gas to the industrial
customer has a relatively stable demand conditions. The
flow processes carried out in the stations have been in-
vestigated and the quantitative approach to consideration
of variable demand conditions in turboexpander selection
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and sizing procedure has been presented and discussed.

2. Theory

Assuming that the kinetic and potential energy changes
of the gas along the turboexpander are insignificant in
comparison to the changes in enthalpy, electric power pro-
duced in the generator with turboexpander as a prime
mover can be obtained from

Ẇ = η0ηmηgṁ∆h (1)

where Ẇ is the power available at generator terminals
(W), η0 is the isentropic efficiency of the turbine, ηm is
the mechanical efficiency of the turbine, ηg is the gener-
ator efficiency, ṁ is the mass flow rate of the gas (kg/s)
and ∆h is the enthalpy difference between the inlet and
the outlet conditions (J/kg).

Given the isentropic efficiency of the turboexpander,
the enthalpy difference is

∆h = η0 (hin − h0,out) (2)

where hin is the enthalpy of the gas at the turboexpander
inlet calculated form the property relation hin = h (pin, Tin),
and h0,out is the enthalpy of the gas at the turboexpander
outlet if the process were isentropic, i.e.

h0,out = h (pout, sout) (3)

Since for the isentropic process sout = sin, while the
entropy of the gas at the turboexpander inlet can be cal-
culated from the pressure and temperature conditions with
the appropriate property relation sin = s (pin, Tin), the en-
thalpy h0,out is obtained from Eq. (3). The enthalpy of
the gas at the turboexpander outlet is

hout = hin − ∆h (4)

and the temperature at the turboexpander outlet can be
calculated iteratively form the property relation Tout =
T (pout, hout).

The isentropic efficiency of the turboexpander at part-
load conditions cane be obtained from the dimensional
analysis. The maximum efficiency curve as a function of
turboexpander specific speed can be approximated by

η = ηd

2

(
V̇

V̇d

)
−

(
V̇

V̇d

)2
 (5)

whereηd is the turboexpander efficiency at the design (op-
timum) conditions, while V̇ and V̇d are volumetric gas flow
rates at part-load and design conditions, respectively.

The thermodynamic property relations were calculated
in this study using GERG 2004 Equation of State as im-
plemented in NIST REFPROP database [22].

3. Results

3.1. Case study I: local distribution network

Figure 1. shows the hourly demand curve (volumet-
ric flow rate at standard conditions) for the representa-
tive period of one year of operation of the pressure regula-
tor station delivering gas from upstream high pressure gas
transmission pipeline to local gas distribution network in
municipal area. The corresponding values of pressure at
the inlet and the outlet of the station are shown in Figure
2, while the values of the temperature at the inlet of the
station are shown in Figure 3.
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Figure 1: Hourly demand curve in municipal area (flow at standard
conditions of 101.325 kPa and 273.15 K).
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Figure 2: Inlet and outlet pressure profiles (gauge pressure) in Case
study I.

Figure 4 shows the estimated theoretical limit value
of power output from the process assuming isentropic ex-
pansion of the gas between the inlet sate (p-T conditions)
and the outlet state (pressure setpoint) in the form of a
load duration curve corresponding to load curve presented
in Figure1. Based on the cumulative load duration curve
discreet optimisation problem of turboexpander sizing was
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Figure 3: Inlet temperature profile in Case study I.

formulated with the net income from the operation of the
turboxpander as an objective function, and the number of
turboexpanders, nominal power output and annual work-
ing hours of each turboexpander as a decision variables.
The solution of the problem allowed for the sellection of
one two-stage turboexpander with nominal power outpt of
1,800 kW (Table 1).
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Figure 4: Duration curve of power output (theoretical limit value)
in Case study I.

3.2. Case study II: industrial customer

Figure 5. shows the hourly demand curve for the pe-
riod of 1 year at pressure reguator sation delivering gas
from high pressure gas pipeline to the small scale end-user
instalation. The pressure profiles at the inlet and the out-
let of the station ae shown in Figure 6, and the respective
temperature profile at the inlet of the station is shown
in Figure 7. The analogously estimated theoretical limit
value of power output form the process is shown in Fig-
ure 8. The solution of the sizing problem results in the
selection of one single-stage turboexpander with nominal
power output of 160 kW (Table 1).
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Figure 5: Hourly demand curve of industrial customer (flow at stan-
dard conditions of 101.325 kPa and 273.15 K).
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Figure 6: Inlet and outlet pressure profiles (gauge pressure) in Case
study II.
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Figure 7: Inlet temperature profile in case study II.

3.3. Equipment sizing calculations

Given the turboexpander efficiency at the design condi-
tions, the efficiency at part-load operational conditions has

3



Table 1: Results of the turboexpander sizing calculations.

Case study I (distribution network) II (industrial customer)

Turboexpander manufacturer CRYOSTAR RMG
Type TG200 MTG160

Number of stages 2 1
Nominal power output (kW) 1,800 160

Efficiency at the design conditions (%) 92 80
Nominal gas flow rate (m3/h) 40,000 9,000
Maximal gas flow rate (m3/h) 44,000 10,000
Minimal gas flow rate (m3/h) 10,000 3,000

Annual working hours 8,725 8,760
Turboexpander capital expenditures (PLN) 6,420,700 1,060,500
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Figure 8: Duration curve of power output in Case study II.

been calculated from Eq. 5. In the case of the local dis-
tribution network, the configuration with a two-stage tur-
boexpander was adopted, with the inlet and the interme-
diate pressures of 3.3 MPa and 1.2 MPa, respectively. A
series pressure regulation system before gas expansion was
assumed in order to limit the enthalpy decrease on a single
stage of the turboexpander, which should not exceed ∼150
kJ/kg due to turboexpander design constraints. Two al-
ternative solutions regarding the configuration of the pre-
heating system were considered in this study, namely a)
the configuration with gas boilers, and b) the configura-
tion with CHP unit with internal combustion engine. The
results of the preliminary equipment sizing calculations for
the above scenarios are presented in Table 2 and Table 3.

The annual heat demand in Table 2 is the integral with
respect to time of the instantaneous heat rate on the period
of 1 year. Boiler power outputs result from the maximum
instantaneous heat rate, occurring at the stations. Annual
fuel costs were determined on the basis of annual heat
demand, assuming fuel price of 0.1203 PLN/kWh for the
group E high methane natural gas in local distribution
network and 0.1137 PLN/kWh for the group L, sub-group
Lw nitrified natural gas for industrial customer. For the
calculation of heat demand the constant efficiency of gas

preheater and gas boiler was assumed. The figures were
85% and 95%, respectively.

The peak demand for heat in Table 3 is the maximum
instantaneous heat rate occurring at the stations, which
served as the design parameter for the selection of the
CHP engines. The sizing of the engines was based on heat
demand, since heat production for the gas preheating is
the main product of the cogeneration process. Electric
power of the engines results from the heat to power ratio
declared by the engine manufacturers.

The required heating system supply temperature re-
sults from the assumptions that the minimum tempera-
ture difference between the heating medium and the gas
is 10◦C, while the inlet gas temperature of the preheater
should ensure the minimum temperature at the turboex-
pander outlet of 5◦C (operational constraint). Fuel con-
sumption and annual fuel costs have been determined from
engine manufacturer data, based on the assumption that
the engines operate at nominal power output throughout
the year.

3.4. Economic analysis

The summary of the economic indicators for the two
analyzed cases are presented in Table 4.

The revenue from sales of electricity produced by tur-
boexpander was calculated by multiplying the amount of
electricity produced in a power generator driven by tur-
boexpander by sale price of electricity of 200 PLN/MWh.
The sell price of electricity produced in CHP accounts for
the premium of 29.84 PLN/MWh, set by the Polish en-
ergy regulator as a financial support for CHP electricity.
In case of CHP unit the total revenue from electricity sales
covers the electricity produced in generators powered by
both turboexpander and CHP unit.

The annualized capital expenditures were determined
from the following formula

CAPEXa = CAPEX
r

1 − (1 + r)
−n (6)

where r is the discount rate (%) and n is the project lifes-
pan in years. For the purpose of the economic effectiveness
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Table 2: Characteristics of preheating system with with gas boiler.

Case study I (distribution network) II (industrial customer)

Annual heat demand (MWh) 16,043 1,921
Heating system supply temperature (◦C) 90 110

Boiler power output (kW) 3,800 300
Fuel price (PLN/kWh) 0.1203 0.1137
Annual fuel cost (PLN) 2,031,000 229,000

Preheating system capital expenditures (PLN) 800,000 78,500

Table 3: Characteristics of preheating system with CHP unit.

Case study I (distribution network) II (industrial customer)

Peak heat demand (kW) 3,833 302
Heating system supply temperature (◦C) 90 110

Electric power output (kW) 2×2,022 = 4,044 400
Heat output (kW) 2×2,265 = 4,530 300

Annual fuel cost (PLN) 10,024,000 942,000
Preheating system capital expenditures (PLN) 8,610,000 1,640,000

Table 4: Results of cost-effectiveness analysis.

Case study I (distribution network) II (industrial customer)
Preheating system type Boiler CHP unit Boiler CHP unit

Revenue from electricity sales - turboexpander (PLN) 1,977,400 242,700
Revenue from electricity sales - CHP unit (PLN) 8,142,000 805,000
Total annual revenue from electricity sales (PLN) 1,977,400 10,119,400 242,700 1,047,700

Total capital expenditures (PLN) 7,220,700 15,030,700 1,139,000 2,700,500
Annualized capital expenditures (PLN) 1,247,900 2,597,600 196,800 466,700

Operation and maintanace costs (PLN per annum) 128,000 1,627,000 21,000 144,000
Cash flow from investing activities (PLN per annum) - 1,429,500 - 4,129,200 - 204,100 - 505,000

Annual EBITDA (PLN) -181,600 -1,531,600 -7,300 -38,300
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evaluation, a constant discount rate of 5% with seven-year
amortization period was assumed.

The costs of project documentation, adaptation of the
existing station facilities and electricity connection are sub-
ject to local conditions, and there is no literature data
allowing their reliable estimation. Based on market re-
search, project design and construction work was assumed
to amount to 12% of the turboexpander and preheating
system capital expenditures. Turboexpander service and
maintenance costs were set to 2% of the capital expendi-
tures [23], while service and maintenance cost of a CHP
unit, confirmed by manufacturer, amounts to 10 EUR/MWh
(EUR/PLN = 4.1).

Total capital expenditures in Table 4 are the sum of
turboexpander capital expenditures and the capital expen-
ditures of the respective preheating system.

4. Discussion

Table 1 shows that considering the minimal gas flow
rate required for the turboexpander operation, the avail-
ability of the pressure regulator station is 99.6% for the
case study I and 100% for the case study II, i.e. the tur-
boexpander could be running annually for 8,725 h in the
station supplying the gas distribution network, and 8,760
h in the station delivering gas to the industrial customer.
However, part-load operating conditions are as much as
92% and 100% of the operation time for the first and sec-
ond case study, respectively.

Despite good thermodynamic and environmental per-
formance of the project, Table 4 shows that economic fail-
ure of the project is to be anticipated due to current re-
lationship between electricity and natural gas prices in
Poland. Both case studies show the negative cash flow
from investing activities. Furthermore, all scenarios lead
to negative annual EBITDA, which indicates that the in-
vestment has fundamental problems with profitability and
with cash flow. Consequently the project cannot be prof-
itable without subsidies in the foreseeable economic and
industry climate.

The income obtained as a consequence of the imple-
mentation of the project could be increased by consider-
ing the gas distribution system operator as a prosumer,
thanks to the savings on the electric power annual invoice.
However, current energy market regulations in Poland do
not allow pipeline operators to become energy producers.

5. Conclusions

Currently, the commitment to improving the energy
efficiency and protecting the environment is present in all
business decisions regarding the natural gas midstream in-
frastructure planning. Waste energy recovery in pressure
regulator station contributes to power generation, and as

such promotes the independence from external energy sup-
ply, which follows the precepts of the EC law on the pro-
motion of cogeneration. Conversion of hitherto wasted en-
ergy resources into power reduces the use of fossil fuels and
lowers greenhouse gas emissions. Low CO2 emission costs
and falling prices for coal are contributing to the decrease
in electricity prices, which in turn make the investment
considered here not profitable. Current price relations be-
tween electricity produced from coal and from other energy
sources can be varied through a decision-making process
which may improve the cost effectiveness of the discussed
solution.
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