Direct carbon, integrated gasification, and deposited carbon solid oxide fuel cells: a patent-based review of technological status
Abstract
This review presents three directions in solid oxide fuel cell (SOFC) technology development involving solid-state carbon insome stage of the fuel-to-electricity conversion process: direct carbon (DC-SOFC), integrated gasification (IG-SOFC) anddeposited carbon (rechargeable SOFC). Recent achievements of science and technology were studied in order to identifythe most widely developed concepts. In addition, the review contains a statistical approach to published patents and articles,naming the people and institutions active in the field. Simultaneous development of all three technologies could bringsynergies and contributed to a major breakthrough in the efficiency of coal-fired power plants.References
[1] International Energy Agency, Key World Energy Statistics (2015).
[2] T. Chmielniak, H. Łukowicz, Wysoko sprawne „zero-emisyjne” bloki
we˛glowe zintegrowane z wychwytem co2 ze spalin, Polityka energetyczna
15 (2012) 91–106.
[3] H. Ghezel-Ayagh, Advances in sofc development at fuelcell energy,
in: 14th Annual SECA Workshop, Pittsburgh, PA, 2013.
[4] Accessed on 3.09.2016. [link].
URL http://www.siemens.com/stories/cc/en/record-breaking
-power-plant/#chapter-solution
[5] J. Kupecki, J. Jewulski, K. Motylinski, Parametric evaluation of a
micro-chp unit with solid oxide fuel cells integrated with oxygen transport
membranes, international journal of hydrogen energy 40 (35)
(2015) 11633–11640.
[6] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide
fuel cells fed by dme, international journal of hydrogen energy 40 (35)
(2015) 12009–12022.
[7] J. Kupecki, Modeling platform for a micro-chp system with sofc operating
under load changes, in: Applied Mechanics and Materials, Vol.
607, Trans Tech Publ, 2014, pp. 205–208.
[8] J. Kupecki, J. Milewski, K. Badyda, J. Jewulski, Evaluation of sensitivity
of a micro-chp unit performance to sofc parameters, ECS Transactions
51 (1) (2013) 107–116.
[9] J. Kupecki, M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Experimental
and numerical analysis of a serial connection of two sofc stacks in
a micro-chp system fed by biogas, International Journal of Hydrogen
Energy 42 (5) (2017) 3487–3497.
[10] S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M. C. Romano,
Predicting the ultimate potential of natural gas sofc power
cycles with co2 capture–part a: Methodology and reference cases,
Journal of Power Sources 324 (2016) 598–614.
[11] M. C. Williams, T. Horita, K. Yamaji, H. Yokokawa, An application of
solid particles in fuel cell technology, KONA Powder and Particle Journal
25 (2007) 153–161.
[12] T. M. Gür, Critical review of carbon conversion in "carbon fuel cells",
Chemical reviews 113 (8) (2013) 6179–6206.
[13] B. Heydorn, S. Crouch-Baker, Direct carbon conversion - progressions
of power, Institute of Physics and IOP Publishing, 2006.
[14] S. Giddey, S. Badwal, A. Kulkarni, C. Munnings, A comprehensive
review of direct carbon fuel cell technology, Progress in Energy and
Combustion Science 38 (3) (2012) 360–399.
[15] K. Hemmes, J. Cooper, J. Selman, Recent insights concerning dcfc
development: 1998–2012, international journal of hydrogen energy
38 (20) (2013) 8503–8513.
[16] Y. Bai, Y. Liu, Y. Tang, Y. Xie, J. Liu, Direct carbon solid oxide fuel
cell—a potential high performance battery, international journal of hydrogen
energy 36 (15) (2011) 9189–9194.
[17] T. Gur, Direct carbon fuel cell system utilizing solid carbonaceous fuels,
Final scientific/technical report, Direct Carbon Technologies, dOE
Award No. DE-NT0004395 (2010).
[18] T. M. Gür, M. Homel, A. V. Virkar, High performance solid oxide fuel
cell operating on dry gasified coal, Journal of power sources 195 (4)
(2010) 1085–1090.
[19] D. R. Lide, CRC Handbook of chemistry and physics, 87th Edition
(2006-2007).
[20] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals,
John Wiley & Sons, New York, 2006.
[21] A. C. Chien, S. S. Chuang, Effect of gas flow rates and boudouard
reactions on the performance of ni/ysz anode supported solid oxide
fuel cells with solid carbon fuels, Journal of Power Sources 196 (10)
(2011) 4719–4723.
[22] S. L. Jain, Y. Nabae, B. J. Lakeman, K. D. Pointon, J. T. Irvine, Solid
state electrochemistry of direct carbon/air fuel cells, Solid State Ionics
179 (27) (2008) 1417–1421.
[23] P. Desclaux, S. Nürnberger, M. Rzepka, U. Stimming, Investigation
of direct carbon conversion at the surface of a ysz electrolyte in a
sofc, international journal of hydrogen energy 36 (16) (2011) 10278–
10281.
[24] R. Wolk, Direct carbon fuel cells: Assessment of their potential
as solid carbon fuel based power generation systems, Report to
the CMS Review Committee UCRL-SR-203880, Lawrence Livermore
National Laboratory (LLNL), Livermore, CA (2004).
[25] J. F. Cooper, Direct conversion of coal derived carbon in fuel cells, in:
Recent trends in fuel cell science and technology, Springer, 2007, pp.
248–266.
[26] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. United States
Patent No.: US8309272B2 (2012).
[27] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. Japanese
Patent No.: JP5284596B2 (2013).
[28] E. Masahiro, M. Ihara, Electric generator. Japanese Patent No.:
JP5344565B2 (2013).
[29] M. Ihara, K. Naganari, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki,
Solid oxide cell for generating electricity using the power generation
method and the generation method of the solid oxide cell.
Japanese Patent No.: JP5489327B2 (2014).
[30] M. Ihara, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Power
generation method of the solid oxide fuel cell. Japanese Patent No.:
JP5495377B2 (2014).
[31] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide fuel cell with solid
carbon deposited on the anode. Canadian Patent No.: CA2647249C
(2015).
[32] J. P. Kim, C. H. Jeon, J. H. Song, G. B. Kim, Y. G. Kim,
Angle-adjustable coal fuel cell unit. Republic of Korea Patent No.:
KR101010535B1 (2011).
[33] C. H. Jeon, J. P. Kim, Y. J. Chang, S. K. Lee, W. S. Son, S. Y. Kim,
S. D. Lee, S. K. Lee, Solid oxide fuel cell system fueled by natural
gas. Republic of Korea Patent No.: KR101223645B1 (2013).
[34] C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped
with carbon monoxide generator using ultraclean coal or graphite. Republic
of Korea Patent No.: KR101477195B1 (2014).
[35] C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped
with carbon monoxide generator using ultraclean coal or graphite.
United States Patent No.: US9257713B2 (2016).
[36] J.-P. Kim, H. Lim, C.-H. Jeon, Y.-J. Chang, K.-N. Koh, S.-M. Choi,
J.-H. Song, Performance evaluation of tubular fuel cells fuelled by
pulverized graphite, Journal of Power Sources 195 (22) (2010) 7568–
7573.
[37] J.-P. Kim, H.-K. Choi, Y.-J. Chang, C.-H. Jeon, Feasibility of using
ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell, international
journal of hydrogen energy 37 (15) (2012) 11401–11408.
[38] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Flat plate type bubbling
bed solid oxide direct carbon fuel cell stack. Republic of China Utility
Model No.: CN202004100U (2011).
[39] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Fuel cell stack. Republic of
China Utility Model No.: CN202034437U (2011).
[40] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Solid oxide direct carbon
fuel cell stack of tablet bubbling bed. Republic of China Patent No.:
CN102170009B (2012).
[41] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Compact flat-plate solid
oxide direct carbon fuel cell stack. Republic of China Patent No.:
CN102185149B (2013).
[42] X. Yu, Y. Shi, H. Wang, N. Cai, C. Li, R. I. Tomov, J. Hanna, B. A.
Glowacki, A. F. Ghoniem, Experimental characterization and elementary
reaction modeling of solid oxide electrolyte direct carbon fuel cell,
Journal of Power Sources 243 (2013) 159–171.
[43] T. M. Gür, R. Huggins, Direct electrochemical conversion of carbon to
electrical energy in a high temperature fuel cell. United States Patent
No.: US5376469A (1994).
[44] T. M. Gür, High temperature direct coal fuel cell. United States Patent
No.: US7799472B2 (2010).
[45] T. M. Gür, R. E. Mitchell, A. C. Lee, S. Li, Integrated dry gasification
fuel cell system for conversion of solid carbonaceous fuels. United
States Patent No.: US8563183B2 (2013).
[46] A. C. Lee, S. Li, R. E. Mitchell, T. M. Gür, Conversion of solid carbonaceous
fuels in a fluidized bed fuel cell, Electrochemical and Solid-
State Letters 11 (2) (2008) B20–B23.
[47] S. Li, A. C. Lee, R. E. Mitchell, T. M. Gür, Direct carbon conversion in
a helium fluidized bed fuel cell, Solid State Ionics 179 (27-32) (2008)
1549–1552.
[48] A. C. Lee, R. E. Mitchell, T. M. Gür, Thermodynamic analysis of
gasification-driven direct carbon fuel cells, Journal of Power Sources
194 (2) (2009) 774–785.
[49] T. M. Gür, Mechanistic modes for solid carbon conversion in high temperature
fuel cells, Journal of The Electrochemical Society 157 (5)
(2010) B751–B759.
[50] M. Homel, T. M. Gür, J. H. Koh, A. V. Virkar, Carbon monoxide-fueled
solid oxide fuel cell, Journal of Power Sources 195 (19) (2010) 6367–
6372.
[51] J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Sposób i układ elektrochemicznej
generacji energii elektrycznej w stosach stałotlenkowych
zasilanych zwłaszcza paliwem we˛glowym [The method and the system
of electrochemical generation of electric energy in solid oxide
stacks, fueled in particular with carbonaceous fuel]. Republic of
Poland Patent No.: PL405205B (2013).
[52] J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Stos we˛glowych ogniw
paliwowych [Carbon fuel cell stack]. Republic of Poland Patent No.:
PL405206B (2013).
[53] M. Dudek, P. Tomczyk, K. Juda, R. Tomov, B. Glowacki, S. Batty,
P. Risby, R. Socha, Comparison of the performances of dcfc fuelled
with the product of methane rf plasma reforming and carbon black,
Int. J. Electrochem. Sci 7 (2012) 6704–6721.
[54] M. Dudek, R. Tomov, C. Wang, B. Glowacki, P. Tomczyk, R. Socha,
M. Mosiałek, Feasibility of direct carbon solid oxide fuels cell (dcsofc)
fabrication by inkjet printing technology, Electrochimica Acta
105 (2013) 412–418.
[55] M. Dudek, P. Tomczyk, R. Socha, M. Skrzypkiewicz, J. Jewulski,
Biomass fuels for direct carbon fuel cell with solid oxide electrolyte,
Int. J. Electrochem. Sci 8 (2013) 3229–3253.
[56] J. Jewulski, M. Skrzypkiewicz, Direct carbon fuel cells based on solid
oxide electrolyte technology, Przegla˛d elektrotechniczny 89 (2013)
268–270.
[57] J. Jewulski, M. Skrzypkiewicz, M. Struzik, I. Lubarska-Radziejewska,
Lignite as a fuel for direct carbon fuel cell system, international journal
of hydrogen energy 39 (36) (2014) 21778–21785.
[58] R. Antunes, M. Skrzypkiewicz, Chronoamperometric investigations
of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell,
International Journal of Hydrogen Energy 40 (12) (2015) 4357–4369.
[59] M. Skrzypkiewicz, I. Lubarska-Radziejewska, J. Jewulski, The effect
of fe2o3 catalyst on direct carbon fuel cell performance, International
Journal of Hydrogen Energy 40 (38) (2015) 13090–13098.
[60] M. Dudek, M. Skrzypkiewicz, N. Moskała, P. Grzywacz, M. Sitarz,
I. Lubarska-Radziejewska, The impact of physicochemical properties
of coal on direct carbon solid oxide fuel cells, International Journal of
Hydrogen Energy 41 (41) (2016) 18872–18883.
[61] M. Skrzypkiewicz, M. Dudek, Carbon as a fuel for efficient electricity
generation in carbon solid oxide fuel cells, in: E3S Web of Conferences,
Vol. 10, EDP Sciences, 2016, p. 00116.
[62] C. N. Li, Buried tube type bubbling bed direct carbon fuel cell. Republic
of China Patent No.: CN100440597C (2008).
[63] N. Cai, C. Li, Y. Shi, Direct carbon fuel cell reaction device. Republic
of China Patent No.: CN100595959C (2010).
[64] Y. Shi, N. Cai, H. Wang, Fluid bed electrode direct carbon fuel
cell device. Republic of China Patent Application Publication No.:
CN102324539A (2012).
[65] X.-Y. Zhao, Q. Yao, S.-Q. Li, N.-S. Cai, Studies on the carbon reactions
in the anode of deposited carbon fuel cells, Journal of Power
Sources 185 (1) (2008) 104–111.
[66] C. Li, Y. Shi, N. Cai, Performance improvement of direct carbon fuel
cell by introducing catalytic gasification process, Journal of Power
Sources 195 (15) (2010) 4660–4666.
[67] C. Li, Y. Shi, N. Cai, Effect of contact type between anode and carbonaceous
fuels on direct carbon fuel cell reaction characteristics,
Journal of Power Sources 196 (10) (2011) 4588–4593.
[68] C. Li, Y. Shi, N. Cai, Mechanism for carbon direct electrochemical
reactions in a solid oxide electrolyte direct carbon fuel cell, Journal of
Power Sources 196 (2) (2011) 754–763.
[69] J. H. Yoo, H. K. Choi, S. D. Kim, S. H. Lee, Y. J. Rhim, Solid oxide fuel
cells fueled by gasificating of solid carbon. Republic of Korea Patent
No.: KR101177648B1 (2012).
[70] T. H. Lim, R. H. Song, S. J. Park, S. B. Lee, J. W. Lee, B. J.
Jung, N. Y. Lee, Coal pretreatment method for direct carbon fuel
cell and direct carbon fuel cell thereof. Republic of Korea Patent No.:
KR101451904B1 (2014).
[71] T.-H. Lim, S.-K. Kim, U.-J. Yun, J.-W. Lee, S.-B. Lee, S.-J. Park, R.-H.
Song, Performance characteristic of a tubular carbon-based fuel cell
short stack coupled with a dry carbon gasifier, international journal of
hydrogen energy 39 (23) (2014) 12395–12401.
[72] H. Ju, J. Eom, J. K. Lee, H. Choi, T.-H. Lim, R.-H. Song, J. Lee,
Durable power performance of a direct ash-free coal fuel cell, Electrochimica
Acta 115 (2014) 511–517.
[73] J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrode assembly,
direct carbon fuel cell including the same, and method of preparing
the same. United States Patent No.: US9406946B2 (2016).
[74] J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrolyte assembly,
direct carbon fuel cell comprising the same, and the preparation
thereof. Republic of Korea Patent No.: KR101647294B1 (2016).
[75] H. Jang, J. D. Ocon, S. Lee, J. K. Lee, J. Lee, Direct power generation
from waste coffee grounds in a biomass fuel cell, Journal of Power
Sources 296 (2015) 433–439.
[76] S. Chuang, Carbon-based fuel cell.United Stated Patent No.:
US8940454B2 (2015).
[77] S. Chuang, Fuel cell of direct electrochemical oxidation (versions)
and generation method of electric energy from solid-phase organic
fuel (versions). Russian Federation Patent No.: RU2420833C2
(2011).
[78] A. J. Zillmer, J. P. Carroll, Fuel cell instrumentation system. United
States Patent No.: US7826054B2 (2010).
[79] J. Liu, Y. Liu, Y. Tang, Y. Bai, Direct carbon solid oxide fuel cell power
system. Republic of China Patent No.: CN102130354B (2013).
[80] Y. Tang, J. Liu, Effect of anode and boudouard reaction catalysts on
the performance of direct carbon solid oxide fuel cells, international
journal of hydrogen energy 35 (20) (2010) 11188–11193.
[81] Y. Bai, C. Wang, J. Ding, C. Jin, J. Liu, Direct operation of coneshaped
anode-supported segmented-in-series solid oxide fuel cell
stack with methane, Journal of Power Sources 195 (12) (2010) 3882–
3886.
[82] Y. Xie, Y. Tang, J. Liu, A verification of the reaction mechanism of
direct carbon solid oxide fuel cells, Journal of Solid State Electrochemistry
17 (1) (2013) 121–127.
[83] L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, M. Liu, Behavior of strontiumand
magnesium-doped gallate electrolyte in direct carbon solid oxide
fuel cells, Journal of Alloys and Compounds 608 (2014) 272–277.
[84] Y. Xie, W. Cai, J. Xiao, Y. Tang, J. Liu, M. Liu, Electrochemical gas–
electricity cogeneration through direct carbon solid oxide fuel cells,
Journal of Power Sources 277 (2015) 1–8.
[85] W. Cai, Q. Zhou, Y. Xie, J. Liu, A facile method of preparing fe-loaded
activated carbon fuel for direct carbon solid oxide fuel cells, Fuel 159
(2015) 887–893.
[86] H. Lyu, W. Tian, W. Wang, Y. Jiao, S. Li, Split type direct carbon solid
oxide fuel cell device. Republic of China Patent No.: CN203871426U
(2014).
[87] Y. Jiao, W. Tian, H. Chen, H. Shi, B. Yang, C. Li, Z. Shao, Z. Zhu, S.-D.
Li, In situ catalyzed boudouard reaction of coal char for solid oxidebased
carbon fuel cells with improved performance, Applied Energy
141 (2015) 200–208.
[88] Y. Jiao, J. Zhao, W. An, L. Zhang, Y. Sha, G. Yang, Z. Shao, Z. Zhu,
S.-D. Li, Structurally modified coal char as a fuel for solid oxidebased
carbon fuel cells with improved performance, Journal of Power
Sources 288 (2015) 106–114.
[89] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S.-D. Li,
Controlled deposition and utilization of carbon on ni-ysz anodes of
sofcs operating on dry methane, Energy 113 (2016) 432–443.
[90] S. Wang, Q. Gao, L. Shao, C. Zhang, C. Yuan, X. Liu, T. Wei, C. Ji,
Direct carbon solid oxide fuel cell stack. Republic of China Patent No.:
CN103078128B (2015).
[91] R. Liu, C. Zhao, J. Li, F. Zeng, S. Wang, T. Wen, Z. Wen, A novel
direct carbon fuel cell by approach of tubular solid oxide fuel cells,
Journal of Power Sources 195 (2) (2010) 480–482.
[92] J. Zhou, X. Ye, L. Shao, X. Zhang, J. Qian, S. Wang, A promising
direct carbon fuel cell based on the cathode-supported tubular solid
oxide fuel cell technology, Electrochimica Acta 74 (2012) 267–270.
[93] T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Solid oxide
fuel cell and a carbon direct-oxidizing-type electrode for the fuel cell.
United States Patent No.: US6183896B1 (2001).
[94] J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus
for dcfc and system including the same. Republic of Korea
Patent No.: KR101350456B1 (2014).
[95] J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus
and system for direct carbon fuel cell. United States Patent No.:
US9799900B2 (2017).
[96] M. Ihara, Y. Chiaki, The method of operating a solid oxide fuel cell
and solid oxide fuel cell. Japanese Patent No.: JP4504642B2 (2010).
[97] S. G. Kim, S. C. Hwang, S. T. Kuk, C. M. Yang, Direct carbon fuel cell
stack. Republic of Korea Patent No.: KR101351324B1 (2014).
[98] B. P. Ennis, Carbon capture with power generation. United States
Patent No.: US8850826B2 (2014).
[99] Q. Fan, R. Liu, Direct carbon fueled solid oxide fuel cell or high temperature
battery. United States Patent No.: US7745026B2 (2010).
[100] R. Chandran, Gasifier having integrated fuel cell power generation
system. United States Patent No.: US8968433B2 (2015).
[101] M. Dudek, P. Tomczyk, Composite fuel for direct carbon fuel cell,
Catalysis Today 176 (1) (2011) 388–392.
[102] M. Dudek, Anode materials with increased resistance to the action
of sulfur compounds for the solid oxide fuel cells with direct oxidation
of carbon.Republic of Poland Patent Application No.: PL410775A1
(2016).
[103] M. Dudek, P. Tomczyk, R. Socha, M. Hamaguchi, Use of ash-free
“hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide
electrolyte, International journal of hydrogen energy 39 (23) (2014)
12386–12394.
[104] M. Dudek, On the utilization of coal samples in direct carbon solid
oxide fuel cell technology, Solid State Ionics 271 (2015) 121–127.
[105] A. Kulkarni, F. Ciacchi, S. Giddey, C. Munnings, S. Badwal, J. Kimpton,
D. Fini, Mixed ionic electronic conducting perovskite anode for
direct carbon fuel cells, International Journal of Hydrogen Energy
37 (24) (2012) 19092–19102.
[106] C. Munnings, A. Kulkarni, S. Giddey, S. Badwal, Biomass to power
conversion in a direct carbon fuel cell, International Journal of Hydrogen
Energy 39 (23) (2014) 12377–12385.
[107] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya,
Degradation mechanism in a direct carbon fuel cell operated with
demineralised brown coal, Electrochimica Acta 143 (2014) 278–290.
[108] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya,
B. P. Ladewig, Direct carbon fuel cell operation on brown coal, Applied
Energy 120 (2014) 56–64.
[109] S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Performance evaluation
of a tubular direct carbon fuel cell operating in a packed bed of
carbon, Energy 68 (2014) 538–547.
[110] A. Kulkarni, S. Giddey, S. Badwal, G. Paul, Electrochemical performance
of direct carbon fuel cells with titanate anodes, Electrochimica
Acta 121 (2014) 34–43.
[111] S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Composite anodes
for improved performance of a direct carbon fuel cell, Journal of
Power Sources 284 (2015) 122–129.
[112] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya, Direct
carbon fuel cell operation on brown coal with a ni-gdc-ysz anode,
Electrochimica Acta 178 (2015) 721–731.
[113] B. Yang, R. Ran, Y. Zhong, C. Su, M. O. Tadé, Z. Shao, A carbon–air
battery for high power generation, Angewandte Chemie International
Edition 54 (12) (2015) 3722–3725.
[114] Y. Wu, C. Su, C. Zhang, R. Ran, Z. Shao, A new carbon fuel cell
with high power output by integrating with in situ catalytic reverse
boudouard reaction, Electrochemistry Communications 11 (6) (2009)
1265–1268.
[115] S. Nürnberger, R. Bußar, B. Franke, U. Stimming, Effiziente und
umweltfreundliche nutzung von kohlenstoff zur elektrizitätserzeugung
(vorgetragen von u. stimming), in: Energie - Perspektiven für die
Zukunft. Vorträge der Hamburger Tagung, 2009, pp. 17–28.
[116] S. Nürnberger, R. Bußar, P. Desclaux, B. Franke, M. Rzepka, U. Stimming,
Direct carbon conversion in a sofc-system with a non-porous
anode, Energy & Environmental Science 3 (1) (2010) 150–153.
[117] P. Desclaux, H. Schirmer, M. Woiton, E. Stern, M. Rzepka, Influence
of the carbon/anode interaction on direct carbon conversion in a sofc,
Int J Electrochem Sci 8 (2013) 9125–9132.
[118] J. Dong, Z. Cheng, S. Zha, M. Liu, Identification of nickel sulfides on
ni–ysz cermet exposed to h2 fuel containing h2s using raman spectroscopy,
Journal of Power Sources 156 (2) (2006) 461–465.
[119] M. Konsolakis, G. Marnellos, A. Al-Musa, N. Kaklidis, I. Garagounis,
V. Kyriakou, Carbon to electricity in a solid oxide fuel cell combined
with an internal catalytic gasification process, Chinese Journal
of Catalysis 36 (4) (2015) 509–516.
[120] N. Kaklidis, V. Kyriakou, G. Marnellos, R. Strandbakke, A. Arenillas,
J. Menéndez, M. Konsolakis, Effect of fuel thermal pretreament on
the electrochemical performance of a direct lignite coal fuel cell, Solid
State Ionics 288 (2016) 140–146.
[121] X. Zhu, Y. Li, Z. Lü, Continuous conversion of biomass wastes in a
la0. 75sr0. 25cr0. 5mn0. 5o3– based carbon–air battery, International
Journal of Hydrogen Energy 41 (9) (2016) 5057–5062.
[122] K. Xu, C. Chen, H. Liu, Y. Tian, X. Li, H. Yao, Effect of coal based
pyrolysis gases on the performance of solid oxide direct carbon
fuel cells, International Journal of Hydrogen Energy 39 (31) (2014)
17845–17851.
[123] P. Li, Y. Zhao, B. Yu, J. Li, Y. Li, Improve electrical conductivity of
reduced la2ni0. 9fe0. 1o4+ as the anode of a solid oxide fuel cell by
carbon deposition, International Journal of Hydrogen Energy 40 (31)
(2015) 9783–9789.
[124] M. Lebreton, B. Delanoue, E. Baron, F. Ricoul, A. Kerihuel, A. Subrenat,
O. Joubert, A. L. G. La Salle, Effects of carbon monoxide, carbon
dioxide, and methane on nickel/yttria-stabilized zirconia-based solid
oxide fuel cells performance for direct coupling with a gasifier, International
Journal of Hydrogen Energy 40 (32) (2015) 10231–10241.
[125] G. Cinti, K. Hemmes, Integration of direct carbon fuel cells with
concentrated solar power, international journal of hydrogen energy
36 (16) (2011) 10198–10208.
[126] T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, An investigation
of anodes for direct-oxidation of carbon in solid oxide fuel cells,
Journal of the Electrochemical Society 142 (8) (1995) 2621–2624.
[127] M. Ihara, K. Matsuda, H. Sato, C. Yokoyama, Solid state fuel storage
and utilization through reversible carbon deposition on an sofc anode,
Solid State Ionics 175 (1-4) (2004) 51–54.
[128] D. Niakolas, J. Ouweltjes, G. Rietveld, V. Dracopoulos, S. Neophytides,
Au-doped ni/gdc as a new anode for sofcs operating under
rich ch4 internal steam reforming, international journal of hydrogen
energy 35 (15) (2010) 7898–7904.
[129] B. C. Steele, Survey of materials selection for ceramic fuel cells ii.
cathodes and anodes, Solid State Ionics 86 (1996) 1223–1234.
[130] Y. Gong, K. Huang, Study of a renewable biomass fueled sofc: the
effect of catalysts, International Journal of Hydrogen Energy 38 (36)
(2013) 16518–16523.
[131] N. Keisuke, T. Yoshihisa, Rechargeable direct carbon fuel cell.
Japanese Patent Application Publication No.: JP2010003568A
(2010).
[132] S. Chuang, Carbon-based fuel cell-final report, Tech. rep., Department
of Chemical Engineering, The University of Akron (2006).
[133] B. Habibzadeh, Understanding carbon monoxide oxidation in solid
oxide fuel cells using nickel patterned anode, Ph.D. thesis, University
of Maryland, College Park (2007).
[134] J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Fueki, I. Koshiro,
K. Hirano, Kinetics of the electrode reaction at the co-co2, porous
pt/stabilized zirconia interface, Solid State Ionics 53 (1992) 126–134.
[135] G. O. Lauvstad, R. Tunold, S. Sunde, Electrochemical oxidation of co
on pt and ni point electrodes in contact with an yttria-stabilized zirconia
electrolyte i. modeling of steady-state and impedance behavior,
Journal of The Electrochemical Society 149 (12) (2002) E497–E505.
[136] D. Penchini, G. Cinti, G. Discepoli, E. Sisani, U. Desideri, Characterization
of a 100 w sofc stack fed by carbon monoxide rich fuels,
international journal of hydrogen energy 38 (1) (2013) 525–531.
[137] O. Costa-Nunes, R. J. Gorte, J. M. Vohs, Comparison of the performance
of cu–ceo2–ysz and ni–ysz composite sofc anodes with h2,
co, and syngas, Journal of power sources 141 (2) (2005) 241–249.
[138] T. M. Gür, L. Siewen, Multi-functional cermet anodes for high temperature
fuel cells. United States Patent Application Publication No.:
US2008124613A1 (2008).
[139] R. Mukundan, E. L. Brosha, F. H. Garzon, Sulfur tolerant anodes for
sofcs, Electrochemical and Solid-State Letters 7 (1) (2004) A5–A7.
[140] T. M. Gür, Catalytic oxide anodes for high temperature fuel cells.
United States Patent Application Publication No.: US2008124265A1
(2008).
[141] S. Wang, R. Liu, C. Zhao, J. Li, Solid electrolyte direct carbon
fuel cell. Republic of China Patent Application Publication No.:
CN101540411A (2009).
[142] Y. Zhang, J. Liu, J. Yin, W. Yuan, J. Sui, Fabrication and performance
of cone-shaped segmented-in-series solid oxide fuel cells, International
Journal of Applied Ceramic Technology 5 (6) (2008) 568–573.
[143] P. Jacobson, M. C. Tucker, T. Z. Sholklapper, Fuel cell system. International
Patent Application Publication No.: WO2011059468A1
(2011).
[144] K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification
hybrid power systems, Rynek Energii 88 (3) (2010) 74–79.
[145] R. D. Brost, Carbon-based fuel cell system. United States Patent Application
Publication No.: US2012082910A1 (2012).
— 160
[2] T. Chmielniak, H. Łukowicz, Wysoko sprawne „zero-emisyjne” bloki
we˛glowe zintegrowane z wychwytem co2 ze spalin, Polityka energetyczna
15 (2012) 91–106.
[3] H. Ghezel-Ayagh, Advances in sofc development at fuelcell energy,
in: 14th Annual SECA Workshop, Pittsburgh, PA, 2013.
[4] Accessed on 3.09.2016. [link].
URL http://www.siemens.com/stories/cc/en/record-breaking
-power-plant/#chapter-solution
[5] J. Kupecki, J. Jewulski, K. Motylinski, Parametric evaluation of a
micro-chp unit with solid oxide fuel cells integrated with oxygen transport
membranes, international journal of hydrogen energy 40 (35)
(2015) 11633–11640.
[6] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide
fuel cells fed by dme, international journal of hydrogen energy 40 (35)
(2015) 12009–12022.
[7] J. Kupecki, Modeling platform for a micro-chp system with sofc operating
under load changes, in: Applied Mechanics and Materials, Vol.
607, Trans Tech Publ, 2014, pp. 205–208.
[8] J. Kupecki, J. Milewski, K. Badyda, J. Jewulski, Evaluation of sensitivity
of a micro-chp unit performance to sofc parameters, ECS Transactions
51 (1) (2013) 107–116.
[9] J. Kupecki, M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Experimental
and numerical analysis of a serial connection of two sofc stacks in
a micro-chp system fed by biogas, International Journal of Hydrogen
Energy 42 (5) (2017) 3487–3497.
[10] S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M. C. Romano,
Predicting the ultimate potential of natural gas sofc power
cycles with co2 capture–part a: Methodology and reference cases,
Journal of Power Sources 324 (2016) 598–614.
[11] M. C. Williams, T. Horita, K. Yamaji, H. Yokokawa, An application of
solid particles in fuel cell technology, KONA Powder and Particle Journal
25 (2007) 153–161.
[12] T. M. Gür, Critical review of carbon conversion in "carbon fuel cells",
Chemical reviews 113 (8) (2013) 6179–6206.
[13] B. Heydorn, S. Crouch-Baker, Direct carbon conversion - progressions
of power, Institute of Physics and IOP Publishing, 2006.
[14] S. Giddey, S. Badwal, A. Kulkarni, C. Munnings, A comprehensive
review of direct carbon fuel cell technology, Progress in Energy and
Combustion Science 38 (3) (2012) 360–399.
[15] K. Hemmes, J. Cooper, J. Selman, Recent insights concerning dcfc
development: 1998–2012, international journal of hydrogen energy
38 (20) (2013) 8503–8513.
[16] Y. Bai, Y. Liu, Y. Tang, Y. Xie, J. Liu, Direct carbon solid oxide fuel
cell—a potential high performance battery, international journal of hydrogen
energy 36 (15) (2011) 9189–9194.
[17] T. Gur, Direct carbon fuel cell system utilizing solid carbonaceous fuels,
Final scientific/technical report, Direct Carbon Technologies, dOE
Award No. DE-NT0004395 (2010).
[18] T. M. Gür, M. Homel, A. V. Virkar, High performance solid oxide fuel
cell operating on dry gasified coal, Journal of power sources 195 (4)
(2010) 1085–1090.
[19] D. R. Lide, CRC Handbook of chemistry and physics, 87th Edition
(2006-2007).
[20] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals,
John Wiley & Sons, New York, 2006.
[21] A. C. Chien, S. S. Chuang, Effect of gas flow rates and boudouard
reactions on the performance of ni/ysz anode supported solid oxide
fuel cells with solid carbon fuels, Journal of Power Sources 196 (10)
(2011) 4719–4723.
[22] S. L. Jain, Y. Nabae, B. J. Lakeman, K. D. Pointon, J. T. Irvine, Solid
state electrochemistry of direct carbon/air fuel cells, Solid State Ionics
179 (27) (2008) 1417–1421.
[23] P. Desclaux, S. Nürnberger, M. Rzepka, U. Stimming, Investigation
of direct carbon conversion at the surface of a ysz electrolyte in a
sofc, international journal of hydrogen energy 36 (16) (2011) 10278–
10281.
[24] R. Wolk, Direct carbon fuel cells: Assessment of their potential
as solid carbon fuel based power generation systems, Report to
the CMS Review Committee UCRL-SR-203880, Lawrence Livermore
National Laboratory (LLNL), Livermore, CA (2004).
[25] J. F. Cooper, Direct conversion of coal derived carbon in fuel cells, in:
Recent trends in fuel cell science and technology, Springer, 2007, pp.
248–266.
[26] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. United States
Patent No.: US8309272B2 (2012).
[27] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. Japanese
Patent No.: JP5284596B2 (2013).
[28] E. Masahiro, M. Ihara, Electric generator. Japanese Patent No.:
JP5344565B2 (2013).
[29] M. Ihara, K. Naganari, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki,
Solid oxide cell for generating electricity using the power generation
method and the generation method of the solid oxide cell.
Japanese Patent No.: JP5489327B2 (2014).
[30] M. Ihara, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Power
generation method of the solid oxide fuel cell. Japanese Patent No.:
JP5495377B2 (2014).
[31] M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide fuel cell with solid
carbon deposited on the anode. Canadian Patent No.: CA2647249C
(2015).
[32] J. P. Kim, C. H. Jeon, J. H. Song, G. B. Kim, Y. G. Kim,
Angle-adjustable coal fuel cell unit. Republic of Korea Patent No.:
KR101010535B1 (2011).
[33] C. H. Jeon, J. P. Kim, Y. J. Chang, S. K. Lee, W. S. Son, S. Y. Kim,
S. D. Lee, S. K. Lee, Solid oxide fuel cell system fueled by natural
gas. Republic of Korea Patent No.: KR101223645B1 (2013).
[34] C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped
with carbon monoxide generator using ultraclean coal or graphite. Republic
of Korea Patent No.: KR101477195B1 (2014).
[35] C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped
with carbon monoxide generator using ultraclean coal or graphite.
United States Patent No.: US9257713B2 (2016).
[36] J.-P. Kim, H. Lim, C.-H. Jeon, Y.-J. Chang, K.-N. Koh, S.-M. Choi,
J.-H. Song, Performance evaluation of tubular fuel cells fuelled by
pulverized graphite, Journal of Power Sources 195 (22) (2010) 7568–
7573.
[37] J.-P. Kim, H.-K. Choi, Y.-J. Chang, C.-H. Jeon, Feasibility of using
ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell, international
journal of hydrogen energy 37 (15) (2012) 11401–11408.
[38] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Flat plate type bubbling
bed solid oxide direct carbon fuel cell stack. Republic of China Utility
Model No.: CN202004100U (2011).
[39] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Fuel cell stack. Republic of
China Utility Model No.: CN202034437U (2011).
[40] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Solid oxide direct carbon
fuel cell stack of tablet bubbling bed. Republic of China Patent No.:
CN102170009B (2012).
[41] S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Compact flat-plate solid
oxide direct carbon fuel cell stack. Republic of China Patent No.:
CN102185149B (2013).
[42] X. Yu, Y. Shi, H. Wang, N. Cai, C. Li, R. I. Tomov, J. Hanna, B. A.
Glowacki, A. F. Ghoniem, Experimental characterization and elementary
reaction modeling of solid oxide electrolyte direct carbon fuel cell,
Journal of Power Sources 243 (2013) 159–171.
[43] T. M. Gür, R. Huggins, Direct electrochemical conversion of carbon to
electrical energy in a high temperature fuel cell. United States Patent
No.: US5376469A (1994).
[44] T. M. Gür, High temperature direct coal fuel cell. United States Patent
No.: US7799472B2 (2010).
[45] T. M. Gür, R. E. Mitchell, A. C. Lee, S. Li, Integrated dry gasification
fuel cell system for conversion of solid carbonaceous fuels. United
States Patent No.: US8563183B2 (2013).
[46] A. C. Lee, S. Li, R. E. Mitchell, T. M. Gür, Conversion of solid carbonaceous
fuels in a fluidized bed fuel cell, Electrochemical and Solid-
State Letters 11 (2) (2008) B20–B23.
[47] S. Li, A. C. Lee, R. E. Mitchell, T. M. Gür, Direct carbon conversion in
a helium fluidized bed fuel cell, Solid State Ionics 179 (27-32) (2008)
1549–1552.
[48] A. C. Lee, R. E. Mitchell, T. M. Gür, Thermodynamic analysis of
gasification-driven direct carbon fuel cells, Journal of Power Sources
194 (2) (2009) 774–785.
[49] T. M. Gür, Mechanistic modes for solid carbon conversion in high temperature
fuel cells, Journal of The Electrochemical Society 157 (5)
(2010) B751–B759.
[50] M. Homel, T. M. Gür, J. H. Koh, A. V. Virkar, Carbon monoxide-fueled
solid oxide fuel cell, Journal of Power Sources 195 (19) (2010) 6367–
6372.
[51] J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Sposób i układ elektrochemicznej
generacji energii elektrycznej w stosach stałotlenkowych
zasilanych zwłaszcza paliwem we˛glowym [The method and the system
of electrochemical generation of electric energy in solid oxide
stacks, fueled in particular with carbonaceous fuel]. Republic of
Poland Patent No.: PL405205B (2013).
[52] J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Stos we˛glowych ogniw
paliwowych [Carbon fuel cell stack]. Republic of Poland Patent No.:
PL405206B (2013).
[53] M. Dudek, P. Tomczyk, K. Juda, R. Tomov, B. Glowacki, S. Batty,
P. Risby, R. Socha, Comparison of the performances of dcfc fuelled
with the product of methane rf plasma reforming and carbon black,
Int. J. Electrochem. Sci 7 (2012) 6704–6721.
[54] M. Dudek, R. Tomov, C. Wang, B. Glowacki, P. Tomczyk, R. Socha,
M. Mosiałek, Feasibility of direct carbon solid oxide fuels cell (dcsofc)
fabrication by inkjet printing technology, Electrochimica Acta
105 (2013) 412–418.
[55] M. Dudek, P. Tomczyk, R. Socha, M. Skrzypkiewicz, J. Jewulski,
Biomass fuels for direct carbon fuel cell with solid oxide electrolyte,
Int. J. Electrochem. Sci 8 (2013) 3229–3253.
[56] J. Jewulski, M. Skrzypkiewicz, Direct carbon fuel cells based on solid
oxide electrolyte technology, Przegla˛d elektrotechniczny 89 (2013)
268–270.
[57] J. Jewulski, M. Skrzypkiewicz, M. Struzik, I. Lubarska-Radziejewska,
Lignite as a fuel for direct carbon fuel cell system, international journal
of hydrogen energy 39 (36) (2014) 21778–21785.
[58] R. Antunes, M. Skrzypkiewicz, Chronoamperometric investigations
of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell,
International Journal of Hydrogen Energy 40 (12) (2015) 4357–4369.
[59] M. Skrzypkiewicz, I. Lubarska-Radziejewska, J. Jewulski, The effect
of fe2o3 catalyst on direct carbon fuel cell performance, International
Journal of Hydrogen Energy 40 (38) (2015) 13090–13098.
[60] M. Dudek, M. Skrzypkiewicz, N. Moskała, P. Grzywacz, M. Sitarz,
I. Lubarska-Radziejewska, The impact of physicochemical properties
of coal on direct carbon solid oxide fuel cells, International Journal of
Hydrogen Energy 41 (41) (2016) 18872–18883.
[61] M. Skrzypkiewicz, M. Dudek, Carbon as a fuel for efficient electricity
generation in carbon solid oxide fuel cells, in: E3S Web of Conferences,
Vol. 10, EDP Sciences, 2016, p. 00116.
[62] C. N. Li, Buried tube type bubbling bed direct carbon fuel cell. Republic
of China Patent No.: CN100440597C (2008).
[63] N. Cai, C. Li, Y. Shi, Direct carbon fuel cell reaction device. Republic
of China Patent No.: CN100595959C (2010).
[64] Y. Shi, N. Cai, H. Wang, Fluid bed electrode direct carbon fuel
cell device. Republic of China Patent Application Publication No.:
CN102324539A (2012).
[65] X.-Y. Zhao, Q. Yao, S.-Q. Li, N.-S. Cai, Studies on the carbon reactions
in the anode of deposited carbon fuel cells, Journal of Power
Sources 185 (1) (2008) 104–111.
[66] C. Li, Y. Shi, N. Cai, Performance improvement of direct carbon fuel
cell by introducing catalytic gasification process, Journal of Power
Sources 195 (15) (2010) 4660–4666.
[67] C. Li, Y. Shi, N. Cai, Effect of contact type between anode and carbonaceous
fuels on direct carbon fuel cell reaction characteristics,
Journal of Power Sources 196 (10) (2011) 4588–4593.
[68] C. Li, Y. Shi, N. Cai, Mechanism for carbon direct electrochemical
reactions in a solid oxide electrolyte direct carbon fuel cell, Journal of
Power Sources 196 (2) (2011) 754–763.
[69] J. H. Yoo, H. K. Choi, S. D. Kim, S. H. Lee, Y. J. Rhim, Solid oxide fuel
cells fueled by gasificating of solid carbon. Republic of Korea Patent
No.: KR101177648B1 (2012).
[70] T. H. Lim, R. H. Song, S. J. Park, S. B. Lee, J. W. Lee, B. J.
Jung, N. Y. Lee, Coal pretreatment method for direct carbon fuel
cell and direct carbon fuel cell thereof. Republic of Korea Patent No.:
KR101451904B1 (2014).
[71] T.-H. Lim, S.-K. Kim, U.-J. Yun, J.-W. Lee, S.-B. Lee, S.-J. Park, R.-H.
Song, Performance characteristic of a tubular carbon-based fuel cell
short stack coupled with a dry carbon gasifier, international journal of
hydrogen energy 39 (23) (2014) 12395–12401.
[72] H. Ju, J. Eom, J. K. Lee, H. Choi, T.-H. Lim, R.-H. Song, J. Lee,
Durable power performance of a direct ash-free coal fuel cell, Electrochimica
Acta 115 (2014) 511–517.
[73] J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrode assembly,
direct carbon fuel cell including the same, and method of preparing
the same. United States Patent No.: US9406946B2 (2016).
[74] J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrolyte assembly,
direct carbon fuel cell comprising the same, and the preparation
thereof. Republic of Korea Patent No.: KR101647294B1 (2016).
[75] H. Jang, J. D. Ocon, S. Lee, J. K. Lee, J. Lee, Direct power generation
from waste coffee grounds in a biomass fuel cell, Journal of Power
Sources 296 (2015) 433–439.
[76] S. Chuang, Carbon-based fuel cell.United Stated Patent No.:
US8940454B2 (2015).
[77] S. Chuang, Fuel cell of direct electrochemical oxidation (versions)
and generation method of electric energy from solid-phase organic
fuel (versions). Russian Federation Patent No.: RU2420833C2
(2011).
[78] A. J. Zillmer, J. P. Carroll, Fuel cell instrumentation system. United
States Patent No.: US7826054B2 (2010).
[79] J. Liu, Y. Liu, Y. Tang, Y. Bai, Direct carbon solid oxide fuel cell power
system. Republic of China Patent No.: CN102130354B (2013).
[80] Y. Tang, J. Liu, Effect of anode and boudouard reaction catalysts on
the performance of direct carbon solid oxide fuel cells, international
journal of hydrogen energy 35 (20) (2010) 11188–11193.
[81] Y. Bai, C. Wang, J. Ding, C. Jin, J. Liu, Direct operation of coneshaped
anode-supported segmented-in-series solid oxide fuel cell
stack with methane, Journal of Power Sources 195 (12) (2010) 3882–
3886.
[82] Y. Xie, Y. Tang, J. Liu, A verification of the reaction mechanism of
direct carbon solid oxide fuel cells, Journal of Solid State Electrochemistry
17 (1) (2013) 121–127.
[83] L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, M. Liu, Behavior of strontiumand
magnesium-doped gallate electrolyte in direct carbon solid oxide
fuel cells, Journal of Alloys and Compounds 608 (2014) 272–277.
[84] Y. Xie, W. Cai, J. Xiao, Y. Tang, J. Liu, M. Liu, Electrochemical gas–
electricity cogeneration through direct carbon solid oxide fuel cells,
Journal of Power Sources 277 (2015) 1–8.
[85] W. Cai, Q. Zhou, Y. Xie, J. Liu, A facile method of preparing fe-loaded
activated carbon fuel for direct carbon solid oxide fuel cells, Fuel 159
(2015) 887–893.
[86] H. Lyu, W. Tian, W. Wang, Y. Jiao, S. Li, Split type direct carbon solid
oxide fuel cell device. Republic of China Patent No.: CN203871426U
(2014).
[87] Y. Jiao, W. Tian, H. Chen, H. Shi, B. Yang, C. Li, Z. Shao, Z. Zhu, S.-D.
Li, In situ catalyzed boudouard reaction of coal char for solid oxidebased
carbon fuel cells with improved performance, Applied Energy
141 (2015) 200–208.
[88] Y. Jiao, J. Zhao, W. An, L. Zhang, Y. Sha, G. Yang, Z. Shao, Z. Zhu,
S.-D. Li, Structurally modified coal char as a fuel for solid oxidebased
carbon fuel cells with improved performance, Journal of Power
Sources 288 (2015) 106–114.
[89] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S.-D. Li,
Controlled deposition and utilization of carbon on ni-ysz anodes of
sofcs operating on dry methane, Energy 113 (2016) 432–443.
[90] S. Wang, Q. Gao, L. Shao, C. Zhang, C. Yuan, X. Liu, T. Wei, C. Ji,
Direct carbon solid oxide fuel cell stack. Republic of China Patent No.:
CN103078128B (2015).
[91] R. Liu, C. Zhao, J. Li, F. Zeng, S. Wang, T. Wen, Z. Wen, A novel
direct carbon fuel cell by approach of tubular solid oxide fuel cells,
Journal of Power Sources 195 (2) (2010) 480–482.
[92] J. Zhou, X. Ye, L. Shao, X. Zhang, J. Qian, S. Wang, A promising
direct carbon fuel cell based on the cathode-supported tubular solid
oxide fuel cell technology, Electrochimica Acta 74 (2012) 267–270.
[93] T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Solid oxide
fuel cell and a carbon direct-oxidizing-type electrode for the fuel cell.
United States Patent No.: US6183896B1 (2001).
[94] J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus
for dcfc and system including the same. Republic of Korea
Patent No.: KR101350456B1 (2014).
[95] J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus
and system for direct carbon fuel cell. United States Patent No.:
US9799900B2 (2017).
[96] M. Ihara, Y. Chiaki, The method of operating a solid oxide fuel cell
and solid oxide fuel cell. Japanese Patent No.: JP4504642B2 (2010).
[97] S. G. Kim, S. C. Hwang, S. T. Kuk, C. M. Yang, Direct carbon fuel cell
stack. Republic of Korea Patent No.: KR101351324B1 (2014).
[98] B. P. Ennis, Carbon capture with power generation. United States
Patent No.: US8850826B2 (2014).
[99] Q. Fan, R. Liu, Direct carbon fueled solid oxide fuel cell or high temperature
battery. United States Patent No.: US7745026B2 (2010).
[100] R. Chandran, Gasifier having integrated fuel cell power generation
system. United States Patent No.: US8968433B2 (2015).
[101] M. Dudek, P. Tomczyk, Composite fuel for direct carbon fuel cell,
Catalysis Today 176 (1) (2011) 388–392.
[102] M. Dudek, Anode materials with increased resistance to the action
of sulfur compounds for the solid oxide fuel cells with direct oxidation
of carbon.Republic of Poland Patent Application No.: PL410775A1
(2016).
[103] M. Dudek, P. Tomczyk, R. Socha, M. Hamaguchi, Use of ash-free
“hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide
electrolyte, International journal of hydrogen energy 39 (23) (2014)
12386–12394.
[104] M. Dudek, On the utilization of coal samples in direct carbon solid
oxide fuel cell technology, Solid State Ionics 271 (2015) 121–127.
[105] A. Kulkarni, F. Ciacchi, S. Giddey, C. Munnings, S. Badwal, J. Kimpton,
D. Fini, Mixed ionic electronic conducting perovskite anode for
direct carbon fuel cells, International Journal of Hydrogen Energy
37 (24) (2012) 19092–19102.
[106] C. Munnings, A. Kulkarni, S. Giddey, S. Badwal, Biomass to power
conversion in a direct carbon fuel cell, International Journal of Hydrogen
Energy 39 (23) (2014) 12377–12385.
[107] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya,
Degradation mechanism in a direct carbon fuel cell operated with
demineralised brown coal, Electrochimica Acta 143 (2014) 278–290.
[108] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya,
B. P. Ladewig, Direct carbon fuel cell operation on brown coal, Applied
Energy 120 (2014) 56–64.
[109] S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Performance evaluation
of a tubular direct carbon fuel cell operating in a packed bed of
carbon, Energy 68 (2014) 538–547.
[110] A. Kulkarni, S. Giddey, S. Badwal, G. Paul, Electrochemical performance
of direct carbon fuel cells with titanate anodes, Electrochimica
Acta 121 (2014) 34–43.
[111] S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Composite anodes
for improved performance of a direct carbon fuel cell, Journal of
Power Sources 284 (2015) 122–129.
[112] A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya, Direct
carbon fuel cell operation on brown coal with a ni-gdc-ysz anode,
Electrochimica Acta 178 (2015) 721–731.
[113] B. Yang, R. Ran, Y. Zhong, C. Su, M. O. Tadé, Z. Shao, A carbon–air
battery for high power generation, Angewandte Chemie International
Edition 54 (12) (2015) 3722–3725.
[114] Y. Wu, C. Su, C. Zhang, R. Ran, Z. Shao, A new carbon fuel cell
with high power output by integrating with in situ catalytic reverse
boudouard reaction, Electrochemistry Communications 11 (6) (2009)
1265–1268.
[115] S. Nürnberger, R. Bußar, B. Franke, U. Stimming, Effiziente und
umweltfreundliche nutzung von kohlenstoff zur elektrizitätserzeugung
(vorgetragen von u. stimming), in: Energie - Perspektiven für die
Zukunft. Vorträge der Hamburger Tagung, 2009, pp. 17–28.
[116] S. Nürnberger, R. Bußar, P. Desclaux, B. Franke, M. Rzepka, U. Stimming,
Direct carbon conversion in a sofc-system with a non-porous
anode, Energy & Environmental Science 3 (1) (2010) 150–153.
[117] P. Desclaux, H. Schirmer, M. Woiton, E. Stern, M. Rzepka, Influence
of the carbon/anode interaction on direct carbon conversion in a sofc,
Int J Electrochem Sci 8 (2013) 9125–9132.
[118] J. Dong, Z. Cheng, S. Zha, M. Liu, Identification of nickel sulfides on
ni–ysz cermet exposed to h2 fuel containing h2s using raman spectroscopy,
Journal of Power Sources 156 (2) (2006) 461–465.
[119] M. Konsolakis, G. Marnellos, A. Al-Musa, N. Kaklidis, I. Garagounis,
V. Kyriakou, Carbon to electricity in a solid oxide fuel cell combined
with an internal catalytic gasification process, Chinese Journal
of Catalysis 36 (4) (2015) 509–516.
[120] N. Kaklidis, V. Kyriakou, G. Marnellos, R. Strandbakke, A. Arenillas,
J. Menéndez, M. Konsolakis, Effect of fuel thermal pretreament on
the electrochemical performance of a direct lignite coal fuel cell, Solid
State Ionics 288 (2016) 140–146.
[121] X. Zhu, Y. Li, Z. Lü, Continuous conversion of biomass wastes in a
la0. 75sr0. 25cr0. 5mn0. 5o3– based carbon–air battery, International
Journal of Hydrogen Energy 41 (9) (2016) 5057–5062.
[122] K. Xu, C. Chen, H. Liu, Y. Tian, X. Li, H. Yao, Effect of coal based
pyrolysis gases on the performance of solid oxide direct carbon
fuel cells, International Journal of Hydrogen Energy 39 (31) (2014)
17845–17851.
[123] P. Li, Y. Zhao, B. Yu, J. Li, Y. Li, Improve electrical conductivity of
reduced la2ni0. 9fe0. 1o4+ as the anode of a solid oxide fuel cell by
carbon deposition, International Journal of Hydrogen Energy 40 (31)
(2015) 9783–9789.
[124] M. Lebreton, B. Delanoue, E. Baron, F. Ricoul, A. Kerihuel, A. Subrenat,
O. Joubert, A. L. G. La Salle, Effects of carbon monoxide, carbon
dioxide, and methane on nickel/yttria-stabilized zirconia-based solid
oxide fuel cells performance for direct coupling with a gasifier, International
Journal of Hydrogen Energy 40 (32) (2015) 10231–10241.
[125] G. Cinti, K. Hemmes, Integration of direct carbon fuel cells with
concentrated solar power, international journal of hydrogen energy
36 (16) (2011) 10198–10208.
[126] T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, An investigation
of anodes for direct-oxidation of carbon in solid oxide fuel cells,
Journal of the Electrochemical Society 142 (8) (1995) 2621–2624.
[127] M. Ihara, K. Matsuda, H. Sato, C. Yokoyama, Solid state fuel storage
and utilization through reversible carbon deposition on an sofc anode,
Solid State Ionics 175 (1-4) (2004) 51–54.
[128] D. Niakolas, J. Ouweltjes, G. Rietveld, V. Dracopoulos, S. Neophytides,
Au-doped ni/gdc as a new anode for sofcs operating under
rich ch4 internal steam reforming, international journal of hydrogen
energy 35 (15) (2010) 7898–7904.
[129] B. C. Steele, Survey of materials selection for ceramic fuel cells ii.
cathodes and anodes, Solid State Ionics 86 (1996) 1223–1234.
[130] Y. Gong, K. Huang, Study of a renewable biomass fueled sofc: the
effect of catalysts, International Journal of Hydrogen Energy 38 (36)
(2013) 16518–16523.
[131] N. Keisuke, T. Yoshihisa, Rechargeable direct carbon fuel cell.
Japanese Patent Application Publication No.: JP2010003568A
(2010).
[132] S. Chuang, Carbon-based fuel cell-final report, Tech. rep., Department
of Chemical Engineering, The University of Akron (2006).
[133] B. Habibzadeh, Understanding carbon monoxide oxidation in solid
oxide fuel cells using nickel patterned anode, Ph.D. thesis, University
of Maryland, College Park (2007).
[134] J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Fueki, I. Koshiro,
K. Hirano, Kinetics of the electrode reaction at the co-co2, porous
pt/stabilized zirconia interface, Solid State Ionics 53 (1992) 126–134.
[135] G. O. Lauvstad, R. Tunold, S. Sunde, Electrochemical oxidation of co
on pt and ni point electrodes in contact with an yttria-stabilized zirconia
electrolyte i. modeling of steady-state and impedance behavior,
Journal of The Electrochemical Society 149 (12) (2002) E497–E505.
[136] D. Penchini, G. Cinti, G. Discepoli, E. Sisani, U. Desideri, Characterization
of a 100 w sofc stack fed by carbon monoxide rich fuels,
international journal of hydrogen energy 38 (1) (2013) 525–531.
[137] O. Costa-Nunes, R. J. Gorte, J. M. Vohs, Comparison of the performance
of cu–ceo2–ysz and ni–ysz composite sofc anodes with h2,
co, and syngas, Journal of power sources 141 (2) (2005) 241–249.
[138] T. M. Gür, L. Siewen, Multi-functional cermet anodes for high temperature
fuel cells. United States Patent Application Publication No.:
US2008124613A1 (2008).
[139] R. Mukundan, E. L. Brosha, F. H. Garzon, Sulfur tolerant anodes for
sofcs, Electrochemical and Solid-State Letters 7 (1) (2004) A5–A7.
[140] T. M. Gür, Catalytic oxide anodes for high temperature fuel cells.
United States Patent Application Publication No.: US2008124265A1
(2008).
[141] S. Wang, R. Liu, C. Zhao, J. Li, Solid electrolyte direct carbon
fuel cell. Republic of China Patent Application Publication No.:
CN101540411A (2009).
[142] Y. Zhang, J. Liu, J. Yin, W. Yuan, J. Sui, Fabrication and performance
of cone-shaped segmented-in-series solid oxide fuel cells, International
Journal of Applied Ceramic Technology 5 (6) (2008) 568–573.
[143] P. Jacobson, M. C. Tucker, T. Z. Sholklapper, Fuel cell system. International
Patent Application Publication No.: WO2011059468A1
(2011).
[144] K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification
hybrid power systems, Rynek Energii 88 (3) (2010) 74–79.
[145] R. D. Brost, Carbon-based fuel cell system. United States Patent Application
Publication No.: US2012082910A1 (2012).
— 160
Published
2017-08-25
How to Cite
SKRZYPKIEWICZ, Marek; OBRĘBOWSKI, Szymon.
Direct carbon, integrated gasification, and deposited carbon solid oxide fuel cells: a patent-based review of technological status.
Journal of Power Technologies, [S.l.], v. 98, n. 1, p. 139–160, aug. 2017.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/941>. Date accessed: 21 nov. 2024.
Issue
Section
Fuel Cells and Hydrogen
Keywords
Direct Carbon Fuel Cell; DC-SOFC; DCFC; IG-SOFC; Clean Coal Technologies
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).