Compressed Air Energy Storage Systems

  • Jaroslaw Milewski Warsaw University of Technology
  • Krzysztof Badyda Warsaw University of Technology, Institute of Heat Enegineering
  • Łukasz Szabłowski Warsaw University of Technology, Institute of Heat Enegineering

Abstract

Compressed Air Energy Storage (CAES) technology and electricity generation by this system are described in this paper.General performances and possible system efficiency definitions of those kinds of systems are indicated. Hybrid systemswhich consist of CAES and other Renewable Technologies—RT—(e.g. wind turbines) are presented. A possible locationfor CAES–RT in Poland is indicated. A dynamic mathematical model of CAES is presented; using this model the results forcompressing and expanding operating modes are obtained.

Author Biography

Jaroslaw Milewski, Warsaw University of Technology
Dr

References

[1] J. Stempien, Q. Liu, M. Ni, Q. Sun, S. Chan, Physical principles for
the calculation of equilibrium potential for co-electrolysis of steam and
carbon dioxide in a solid oxide electrolyzer cell (soec), Electrochimica
Acta 147 (2014) 490–497.
[2] D. Bakalis, A. Stamatis, Improving hybrid sofc-gt systems performance
through turbomachinery design, International Journal of Energy Research
38 (15) 1975–1986.
[3] G. De Lorenzo, P. Fragiacomo, Energy analysis of an sofc system fed
by syngas, Energy Conversion and Management 93 (2015) 175–186.
[4] J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, X. Xu, New sensor for gases
dissolved in transformer oil based on solid oxide fuel cell, Sensors and
Actuators, B: Chemical 202 (2014) 232–239.
[5] M. Ferrari, Advanced control approach for hybrid systems based on
solid oxide fuel cells, Applied Energy 145 (2015) 364–373.
[6] E. Hosseinzadeh, M. Rokni, M. Jabbari, H. Mortensen, Numerical
analysis of transport phenomena for designing of ejector in pem forklift
system, International Journal of Hydrogen Energy 39 (12) (2014)
6664–6674.
[7] J. Kupecki, J. Jewulski, Parametric evaluation of a micro-chp unit with
solid oxide fuel cells integrated with oxygen transport membranes,
Vol. 3, 2014, pp. 1841–1847.
[8] M. Law, V.-C. Lee, C. Tay, Dynamic behaviors of a molten carbonate
fuel cell under a sudden shut-down scenario: The effects on temperature
gradients, Applied Thermal Engineering 82 (2015) 98–109.
[9] A.-G. Liu, Y.-W.Weng, L. Chen, H.-A. Ma, Performance analysis of fuel
cell for pressured mcfc/mgt hybrid system, Shanghai Jiaotong Daxue
Xuebao/Journal of Shanghai Jiaotong University 48 (9) (2014) 1239–
1245.
[10] P. Pianko-Oprych, E. Kasilova, Z. Jaworski, Quantification of the radiative
and convective heat transfer processes and their effect on msofc
by cfd modelling, Polish Journal of Chemical Technology 16 (2) (2014)
51–55.
[11] J. Qian, J. Hou, Z. Tao, W. Liu, Fabrication of (sm, ce)o2- interlayer
for yttria-stabilized zirconia-based intermediate temperature solid oxide
fuel cells, Journal of Alloys and Compounds 631 (2015) 255–260.
[12] P. Polverino, C. Pianese, M. Sorrentino, D. Marra, Model-based development
of a fault signature matrix to improve solid oxide fuel cell
systems on-site diagnosis, Journal of Power Sources 280 (2015) 320–
338.
[13] K. Raj, S. Chan, Transient analysis of carbon monoxide transport phenomena
and adsorption kinetics in ht-pemfc during dynamic current
extraction, Electrochimica Acta 165 (2015) 288–300.
[14] M. Ramandi, I. Dincer, P. Berg, A transient analysis of threedimensional
heat and mass transfer in a molten carbonate fuel cell
at start-up, International Journal of Hydrogen Energy 39 (15) (2014)
8034–8047.
[15] I. Rexed, M. della Pietra, S. McPhail, G. Lindbergh, C. Lagergren,
Molten carbonate fuel cells for co2 separation and segregation by
retrofitting existing plants - an analysis of feasible operating windows
and first experimental findings, International Journal of Greenhouse
Gas Control 35 (2015) 120–130.
[16] R. Roshandel, M. Astaneh, F. Golzar, Multi-objective optimization of
molten carbonate fuel cell system for reducing co2 emiss[17] J.-H. Wee, Carbon dioxide emission reduction using molten carbonate
fuel cell systems, Renewable and Sustainable Energy Reviews 32
(2014) 178–191.
[18] H. Xu, Z. Dang, B.-F. Bai, Electrochemical performance study of solid
oxide fuel cell using lattice boltzmann method, Energy 67 (2014) 575–
583.
[19] X. Zhang, H. Liu, M. Ni, J. Chen, Performance evaluation and parametric
optimum design of a syngas molten carbonate fuel cell and gas
turbine hybrid system, Renewable Energy 80 (2015) 407–414.
[20] S. K. Khaitan, M. Raju, Dynamics of hydrogen powered caes based
gas turbine plant using sodium alanate storage system, international
journal of hydrogen energy 37 (24) (2012) 18904–18914.
[21] A. Cavallo, Controllable and affordable utility-scale electricity from intermittent
wind resources and compressed air energy storage (caes),
Energy 32 (2) (2007) 120–127.
[22] Y. S. Najjar, M. S. Zaamout, Performance analysis of compressed air
energy storage (caes) plant for dry regions, Energy conversion and
management 39 (15) (1998) 1503–1511.
[23] G. Grazzini, A. Milazzo, Thermodynamic analysis of caes/tes systems
for renewable energy plants, Renewable Energy 33 (9) (2008) 1998–
2006.
[24] G. Salgi, H. Lund, System behaviour of compressed-air energystorage
in denmark with a high penetration of renewable energy
sources, Applied Energy 85 (4) (2008) 182–189.
[25] P. Denholm, R. Sioshansi, The value of compressed air energy storage
with wind in transmission-constrained electric power systems, Energy
Policy 37 (8) (2009) 3149–3158.
[26] H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, J. Perron, Study and
design of a hybrid wind–diesel-compressed air energy storage system
for remote areas, Applied Energy 87 (5) (2010) 1749–1762.
[27] Y. Kim, D. Favrat, Energy and exergy analysis of a micro-compressed
air energy storage and air cycle heating and cooling system, Energy
35 (1) (2010) 213–220.
[28] N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop, Simulation and analysis
of different adiabatic compressed air energy storage plant configurations,
Applied Energy 93 (2012) 541–548.
[29] N. M. Jubeh, Y. S. Najjar, Power augmentation with caes (compressed
air energy storage) by air injection or supercharging makes environment
greener, Energy 38 (1) (2012) 228–235.
[30] Y. Li, X. Wang, D. Li, Y. Ding, A trigeneration system based on compressed
air and thermal energy storage, Applied Energy 99 (2012)
316–323.
[31] V. Kokaew, M. Moshrefi-Torbati, S. M. Sharkh, Maximum efficiency or
power tracking of stand-alone small scale compressed air energy storage
system, Energy Procedia 42 (2013) 387–396.
[32] T. Brown, V. Atluri, J. Schmiedeler, A low-cost hybrid drivetrain concept
based on compressed air energy storage, Applied Energy 134 (2014)
477–489.
[33] E. Jannelli, M. Minutillo, A. L. Lavadera, G. Falcucci, A small-scale
caes (compressed air energy storage) system for stand-alone renewable
energy power plant for a radio base station: A sizing-design
methodology, Energy 78 (2014) 313–322.
[34] T. Basbous, R. Younes, A. Ilinca, J. Perron, Optimal management of
compressed air energy storage in a hybrid wind-pneumatic-diesel system
for remote area’s power generation, Energy 84 (2015) 267–278.
[35] B. C. Cheung, Design of system architecture and thermal management
components for an underwater energy storage facility, Master’s thesis,
University of Windsor (2014).
[36] B. C. Cheung, R. Carriveau, D. S. Ting, Multi-objective optimization of
an underwater compressed air energy storage system using genetic
algorithm, Energy 74 (2014) 396–404.
[37] B. C. Cheung, R. Carriveau, D. S.-K. Ting, Parameters affecting scalable
underwater compressed air energy storage, Applied Energy 134
(2014) 239–247.
[38] A. J. Pimm, S. D. Garvey, M. de Jong, Design and testing of energy
bags for underwater compressed air energy storage, Energy 66 (2014)
496–508.
[39] A. Vasel-Be-Hagh, R. Carriveau, D. S.-K. Ting, Underwater compressed
air energy storage improved through vortex hydro energy,
Sustainable Energy Technologies and Assessments 7 (2014) 1–5.
[40] B. Kantharaj, S. Garvey, A. Pimm, Thermodynamic analysis of a hybrid
energy storage system based on compressed air and liquid air,
Sustainable Energy Technologies and Assessments.
[41] K. Badyda, J. Milewski, Magazynowanie energii z wykorzystaniem
układów caes, in: Monografia "Współczesne problemy energetyki
gazowej i gazownictw" wydana z okazji IV Konferencji Energetyka
Gazowa). Wydawnictwo Instytutu Techniki Cieplnej Politechniki
S´ lqskiej, Gliwice, 2009, pp. 371–388.
[42] F. Crotogino, K.-U. Mohmeyer, R. Scharf, Huntorf caes: More than 20
years of successful operation, Orlando, Florida, USA.
[43] H.-M. Kim, J. Rutqvist, D.-W. Ryu, B.-H. Choi, C. Sunwoo, W.-K. Song,
Exploring the concept of compressed air energy storage (caes) in lined
rock caverns at shallow depth: a modeling study of air tightness and
energy balance, Applied Energy 92 (2012) 653–667.
[44] T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a
supercritical coal-fired chp plant integrated with an absorption carbon
capture installation, Energy 64 (2014) 513–523.
[45] Y. Zhang, K. Yang, X. Li, J. Xu, The thermodynamic effect of air storage
chamber model on advanced adiabatic compressed air energy storage
system, Renewable Energy 57 (2013) 469–478.
[46] N. M. Jubeh, Y. S. Najjar, Green solution for power generation by adoption
of adiabatic caes system, Applied Thermal Engineering 44 (2012)
85–89.
[47] A. Bagdanavicius, N. Jenkins, Exergy and exergoeconomic analysis
of a compressed air energy storage combined with a district energy
system, Energy Conversion and Management 77 (2014) 432–440.
[48] A. Kere, N. Sadiki, X. Py, V. Goetz, Applicability of thermal energy
storage recycled ceramics to high temperature and compressed air
operating conditions, Energy Conversion and Management 88 (2014)
113–119.
[49] H. Safaei, D. W. Keith, R. J. Hugo, Compressed air energy storage
(caes) with compressors distributed at heat loads to enable waste heat
utilization, Applied Energy 103 (2013) 165–179.
[50] B. Haug, „the iowa stored energy plant", DOE Energy Storage Systems
Program Annular Peer Reviev (2004) 10–11.
[51] F. CROTOGINO, Druckluftspeicher-gasturbinen-kraftwerke/geplanter
einsatz beim ausgleich fluktuierender windenergie-produktion und aktuellem
strombedarf, in: Kasseler Symposium Energie-Systemtechnik,
2002, pp. 26–38.
[52] V. Marano, G. Rizzo, F. A. Tiano, Application of dynamic programming
to the optimal management of a hybrid power plant with wind turbines,
photovoltaic panels and compressed air energy storage, Applied Energy
97 (2012) 849–859.
[53] Polish electric power statistics 2012, 2013 (2013, 2014).
[54] J. Cywi´ nski, Study on the impact of wind generation on the KSE, Master’s
thesis, Warsaw University of Technology (2014).
[55] R. Wiser, M. Bolinger, Wind technologies market report. us department
of energy, energy efficiency and renewable energy (2010).
[56] L. Fried, Global wind statistics 2015, Report, Global Wind Energy
Council (GWEC), Brussels, Belgium.
[57] K. Badyda, J. Lewandowski, Uwarunkowania wzrostu zapotrzebowania
na gaz dla energetyki i ciepłownictwa, Rynek Energii (2009) 2–7.
[58] A. Gajewski, A.; Wójcicki, Mie˛dzynarodowy projekt CASTOR a problematyka
sekwestracji, czyli ujmowania i magazynowania CO2 w
Polsce, Przegla˛d Geologiczny 54 (4) (2005) 270–272.
[59] D. T. Bradshaw, Pumped hydroelectric storage (phs) and compressed
air energy storage (caes), in: Power Engineering Society Summer
Meeting, 2000. IEEE, Vol. 3, IEEE, 2000, pp. 1551–1573.
[60] S. Wang, J. Yu, Optimal sizing of the caes system in a power system
with high wind power penetration, International Journal of Electrical
Power & Energy Systems 37 (1) (2012) 117–125.
[61] P. Denholm, G. L. Kulcinski, Life cycle energy requirements and greenhouse
gas emissions from large scale energy storage systems, Energy
Conversion and Management 45 (13) (2004) 2153–2172.
[62] J. Skorek, K. Banasiak, et al., Thermodynamic analysis of
the compressed-air energy storage systems operation, Inzynieria
Chemiczna I Procesowa 27 (1) (2006) 187–200.
[63] A. HYSYS, A user guide manual, Burlington, MA: Aspen Technology.
[64] . Bartela, A. Skorek-Osikowska, J. Kotowicz, Risk analysis related
to the implementation of a co2 separation technology in a coal-fired
supercritical combined heat and power plant, Rynek Energii 110 (1)
(2014) 90–95.
[65] A. Grzebielec, A. Rusowicz, J. Kuta, Role of installations based on heat
pumps cycles in virtual power plants, Rynek Energii 110 (1) (2014) 40–
45.
[66] J. Kupecki, Modeling platform for a micro-chp system with sofc operating
under load changes, Applied Mechanics and Materials 607 (2014)
205–208.
[67] H. Lund, G. Salgi, The role of compressed air energy storage (caes) in
future sustainable energy systems, Energy Conversion and Management
50 (5) (2009) 1172–1179.
[68] H. Lund, G. Salgi, B. Elmegaard, A. N. Andersen, Optimal operation
strategies of compressed air energy storage (caes) on electricity spot
markets with fluctuating prices, Applied thermal engineering 29 (5)
(2009) 799–806.
[69] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, A comparative thermodynamic,
economic and risk analysis concerning implementation of
oxy-combustion power plants integrated with cryogenic and hybrid air
separation units, Energy Conversion and Management 92 (2015) 421–
430.
Published
2016-12-04
How to Cite
MILEWSKI, Jaroslaw; BADYDA, Krzysztof; SZABŁOWSKI, Łukasz. Compressed Air Energy Storage Systems. Journal of Power Technologies, [S.l.], v. 96, n. 4, p. 245--260, dec. 2016. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/697>. Date accessed: 17 sep. 2021.
Section
Energy Conversion and Storage

Keywords

Keywords: Compressed Air Energy System

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.