Methodology for choosing the optimum architecture of a STES system

  • Jaroslaw Milewski Warsaw University of Technology
  • Marcin Wolowicz
  • Wojciech Bujalski

Abstract

The paper presents a methodology for choosing geometrical parameters of a Seasonal Thermal Energy Storagefacility (STES) on its thermal capacity. The STES is placed in both the ground under ground and connected toand solar panels. A number of scenarios were investigated to find an adequate geometrical proportions of theSTES (for constant tank size and solar panel area.) The results obtained show that the use of various STESgeometries could reduce heat accumulation to 30% depending on the architecture solution chosen.

Author Biography

Jaroslaw Milewski, Warsaw University of Technology
Dr

References

[1] W. Budzianowski, Modelling of co2 content in the atmosphere
until 2300: Influence of energy intensity of gross
domestic product and carbon intensity of energy, International
Journal of Global Warming 5 (1) (2013) 1–17.
[2] J.-H. Wee, Carbon dioxide emission reduction using
molten carbonate fuel cell systems, Renewable and Sustainable
Energy Reviews 32 (2014) 178–191.
[3] L. Bartela, J. Kotowicz, Analysis of operation of the gas
turbine in a poligeneration combined cycle, Archives of
Thermodynamics 34 (4) (2013) 137–159, cited By (since
1996)0.
[4] T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic
analysis of a supercritical coal-fired chp plant integrated
with an absorption carbon capture installation, Energy 64
(2014) 513–523, cited By (since 1996)0.
[5] Łukasz Nikonowicz, J. Milewski, Determination of electronic
conductance of solid oxide fuel cells, Journal of
Power Technologies 91 (2) (2011) 82–92.
[6] D. Bakalis, A. Stamatis, Incorporating available micro gas
turbines and fuel cell: Matching considerations and performance
evaluation, Applied Energy 103 (2013) 607–
617.
[7] R. Chacartegui, B. Monje, D. Sánchez, J. Becerra,
S. Campanari, Molten carbonate fuel cell: Towards negative
emissions in wastewater treatment chp plants, International
Journal of Greenhouse Gas Control 19 (2013)
453–461.
[8] C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta,
Experimental study of dry reforming of biogas in a tubular
anode-supported solid oxide fuel cell, International Journal
of Hydrogen Energy 38 (25) (2013) 10559–10566.
[9] E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration
systems based on lt-pemfc and ht-pemfc by energy
balances, Applied Energy 108 (2013) 82–91.
[10] D. McLarty, J. Brouwer, S. Samuelsen, Hybrid fuel cell
gas turbine system design and optimization, Journal of
Fuel Cell Science and Technology 10 (4).
[11] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance
improvement of ceria-based solid oxide fuel cells with
yttria-stabilized zirconia as an electronic blocking layer
by pulsed laser deposition, International Journal of Hydrogen
Energy 38 (5) (2013) 2407–2412.
[12] S. Sieniutycz, J. Jezowski, Energy Optimization in Process
Systems and Fuel Cells, 2013.
[13] J. Stempien, Q. Sun, S. Chan, Performance of power
generation extension system based on solid-oxide electrolyzer
cells under various design conditions, Energy 55
(2013) 647–657.
[14] S.-B. Wang, C.-F. Wu, S.-F. Liu, P. Yuan, Performance
optimization and selection of operating parameters for a
solid oxide fuel cell stack, Journal of Fuel Cell Science
and Technology 10 (5).
[15] W. Wang, H. Li, X.-F. Wang, Analyses of part-load control
modes and their performance of a sofc/mgt hybrid
power system, Dalian Ligong Daxue Xuebao/Journal of
Dalian University of Technology 53 (5) (2013) 653–658,
cited By (since 1996)0.
[16] F. Chabane, N. Moummi, S. Benramache, Experimental
analysis on thermal performance of a solar air collector
with longitudinal fins in a region of biskra, algeria, Journal
of Power Technologies 93 (1) (2013) 52–58.
[17] M. Reuss, M. Beck, J. Müller, Design of a seasonal thermal
energy storage in the ground, Solar energy 59 (4)
(1997) 247–257.
[18] G. Hellström, S. Larson, Seasonal thermal energy
storage–the hydrock concept, Bulletin of Engineering Geology
and the Environment 60 (2) (2001) 145–156.
[19] M. Inalli, M. Unsal, V. Tanyildizi, A computational model
of a domestic solar heating system with underground
spherical thermal storage, Energy 22 (12) (1997) 1163–
1172.
[20] R. Yumruta¸s, M. Ünsal, A computational model of a heat
pump system with a hemispherical surface tank as the
ground heat source, Energy 25 (4) (2000) 371–388.
[21] R. Yumruta¸s, M. Ünsal, Analysis of solar aided heat pump
systems with seasonal thermal energy storage in surface
tanks, Energy 25 (12) (2000) 1231–1243.
[22] R. Yumruta¸s, M. Kano˘glu, A. Bolatturk, M. ¸ S. Bedir,
Computational model for a ground coupled space cooling
system with an underground energy storage tank, Energy
and buildings 37 (4) (2005) 353–360.
[23] R. Yumruta¸s, M. Ünsal, Modeling of a space cooling system
with underground storage, Applied thermal engineering
25 (2) (2005) 227–239.
[24] M. Inalli, Design parameters for a solar heating system
with an underground cylindrical tank, Energy 23 (12)
(1998) 1015–1027.
[25] D. Lindenberger, T. Bruckner, H.-M. Groscurth, R. Kümmel,
Optimization of solar district heating systems: seasonal
storage, heat pumps, and cogeneration, Energy
25 (7) (2000) 591–608.
[26] B. Nordell, G. Hellström, High temperature solar heated
seasonal storage system for low temperature heating of
buildings, Solar Energy 69 (6) (2000) 511–523.
[27] D. Pahud, Central solar heating plants with seasonal duct
storage and short-term water storage: design guidelines
obtained by dynamic system simulations, Solar Energy
69 (6) (2000) 495–509.
[28] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni,
M. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy
inference system and artificial neural network modeling
of proton exchange membrane fuel cells based on
nanocomposite and recast nafion membranes, International
Journal of Energy Research 37 (4) (2013) 347–357.
[29] S. Hajimolana, S. Tonekabonimoghadam, M. Hussain,
M. Chakrabarti, N. Jayakumar, M. Hashim, Thermal
stress management of a solid oxide fuel cell using neural
network predictive control, Energy 62 (2013) 320–329.
[30] D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz, A
neural network estimator of solid oxide fuel cell performance
for on-field diagnostics and prognostics applications,
Journal of Power Sources 241 (2013) 320–329.
[31] O. Razbani, M. Assadi, Artificial neural network model of
a short stack solid oxide fuel cell based on experimental
data, Journal of Power Sources 246 (2014) 581–586, cited
By (since 1996)0.
[32] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi,
Application of artificial neural networks (ann) for modeling
of industrial hydrogen plant, International Journal of
Hydrogen Energy 38 (15) (2013) 6289–6297.
[33] A. Ucar, M. Inalli, Thermal and economic comparisons of
solar heating systems with seasonal storage used in building
heating, Renewable Energy 33 (12) (2008) 2532–2539.
[34] A. Simons, S. K. Firth, Life-cycle assessment of a 100%
solar fraction thermal supply to a european apartment
building using water-based sensible heat storage, Energy
and Buildings 43 (6) (2011) 1231–1240.
[35] J. Zhao, Y. Chen, S. Lu, Simulation study on operating
modes of seasonal underground thermal energy storage,
in: Proceedings of ISES World Congress 2007 (Vol. I–
Vol. V), Springer, 2009, pp. 2119–2122.
[36] P. Pinel, C. Cruickshank, I. Beausoleil-Morrison,
A.Wills, A review of available methods for seasonal storage
of solar thermal energy in residential applications, Renewable
and Sustainable Energy Reviews 15 (7) (2011)
3341–3359.
[37] M. Sweet, J. McLeskey, Numerical simulation of underground
seasonal solar thermal energy storage (sstes) for a
single family dwelling using trnsys, Solar Energy.
[38] M. de Guadalfajara, M. A. Lozano, L. M. Serra, Evaluation
of the potential of large solar heating plants in spain,
Energy Procedia 30 (2012) 839–848.
[39] M. L. Sweet, J. T. McLeskey Jr, Numerical simulation
of underground seasonal solar thermal energy storage
(SSTES) for a single family dwelling using TRNSYS, Solar
Energy 86 (1) (2012) 289–300.
[40] K. Çomaklı, U. Çakır, M. Kaya, K. Bakirci, The relation
of collector and storage tank size in solar heating systems,
Energy Conversion and Management 63 (2012) 112–117.
[41] T. Schmidt, J. Nussbicker, Monitoring results from german
central solar heating plants with seasonal storage, in:
Solar World Congress, ISES, 2005, pp. 1–6.
[42] T. Schmidt, D. Mangold, New steps in seasonal thermal
energy storage in germany, Tech. rep., Solites - Steinbeis
Research Institute for Solar and Sustainable Thermal Energy
Systems (2006).
[43] T. Schmidt, Seasonal thermal energy storage - pilot
projects and experiences in germany, Tech. rep., Steinbeis
Research Institute for Solar and Sustainable Thermal
Energy Systems (2008).
[44] A. Zi˛ ebik, J. Zuwała, Analiza techniczno-ekonomiczna
zastosowania zasobnika ciepła w elektrociepłowni z
turbin ˛ a przeciwpr˛ e˙zn˛ a w celu maksymalizacji produkcji
szczytowej energii elektrycznej, Gospodarka Paliwami i
Energi ˛ a (2) (2000) 8–12.
[45] A. Zi˛ ebik, J. Zuwała, C. CIASNOCHA, Dobór optymalnej
wielkooeci zasobnika ciepła przy zadanym wykresie
rzeczywistym obci ˛ a˙ze´n w elektrociepłowni z turbin ˛ a
przeciwpr˛ e˙zn˛ a, Energetyka (9) (2001) 507–517.
[46] J. Zuwała, Korzy´sci energetyczne i ekonomiczne zastosowania
zasobników ciepła w elektrociepłowniach,
Gospodarka Paliwami i Energi ˛ a (5-6) (2002) 17–21.
[47] J. Zuwała, Dobór optymalnej mocy turbiny i zasobnika
ciepła dla elektrociepłowni z turbin ˛ a przeciwpr˛ e˙zn˛ a,
Archiwum Energetyki 34 (2 s 185).
[48] A. Zi˛ ebik, A. Fr˛echowicz, J. Zuwała, Analiza porównawcza
jednoprzewodowego systemu przesyłania ciepła
z zastosowaniem zasobników ciepła, Prace Naukowe Politechniki
Warszawskiej. Mechanika (211) (2005) 319–
330.
[49] J. Zuwała, Wpływ" trybu weekendowego" pracy zasobnika
ciepła na struktur ˛ e wytwarzania energii elektrycznej
w elektrociepłowni komunalnej, Ciepłownictwo,
Ogrzewnictwo, Wentylacja.
[50] J. Skorek, W. Kostowski, Model pracy zasobnika ciepła
zintegrowanego z małym układem skojarzonym, Prace
Naukowe Politechniki Warszawskiej. Konferencje 3 (22)
(2002) 1085–1092.
[51] W. KOSTOWSKI, J. KALINA, J. SKOREK, Zwi˛ ekszenie
efektywno´sci energetycznej i ekonomicznej skojarzonego
wytwarzania ciepła i energii elektrycznej
przez zastosowanie zasobnika ciepła, Ciepłownictwo,
Ogrzewnictwo, Wentylacja 36 (5) (2005) 8–14.
[52] J. SKOREK, W. KOSTOWSKI, Zasobniki ciepła w
układach kogeneracyjnych—aspekty techniczne i ekonomiczne.
[53] S. Ma´nkowski, Projektowanie instalacji ciepłej wody
u˙zytkowej, Arkady, 1981.
[54] M. Dzierzgowski,Wymiana ciepła oraz dobór elementów
układu płaskich kolektorów słonecznych z zasobnikiem
ciepła, Ph.D. thesis, Politechnika Warszawska (1985).
[55] D. Mangold, Seasonal storage – a german success story,
Sun & Wind Energy 1 (2007) 48–58.
[56] H.-F. Zhang, X.-S. Ge, H. Ye, Modeling of a space heating
and cooling system with seasonal energy storage, Energy
32 (1) (2007) 51–58.
[57] H.-J. Diersch, D. Bauer, W. Heidemann, W. Rühaak,
P. Schätzl, Finite element modeling of borehole heat exchanger
systems: Part 1. fundamentals, Computers &
Geosciences 37 (8) (2011) 1122–1135.
[58] H.-J. Diersch, D. Bauer, W. Heidemann, W. Rühaak,
P. Schätzl, Finite element modeling of borehole heat exchanger
systems: Part 2. numerical simulation, Computers
& Geosciences 37 (8) (2011) 1136–1147.
[59] H. Paksoy, O. Andersson, S. Abaci, H. Evliya, B. Turgut,
Heating and cooling of a hospital using solar energy coupled
with seasonal thermal energy storage in an aquifer,
Renewable Energy 19 (1) (2000) 117–122.
[60] J. Kim, Y. Lee, W. S. Yoon, J. S. Jeon, M.-H. Koo,
Y. Keehm, Numerical modeling of aquifer thermal energy
storage system, Energy 35 (12) (2010) 4955–4965.
[61] R. Cuypers, N. Maraz, J. Eversdijk, C. Finck, E. Henquet,
H. Oversloot, H. v. Spijker, A. de Geus, Development of
a seasonal thermochemical storage system, Energy Procedia
30 (2012) 207–214.
[62] H. Kerskes, B. Mette, F. Bertsch, S. Asenbeck, H. Drück,
Chemical energy storage using reversible solid/gasreactions
(CWS)–results of the research project, Energy
Procedia 30 (2012) 294–304.
[63] B. Mette, H. Kerskes, H. Drück, Concepts of longterm
thermochemical energy storage for solar thermal
applications–selected examples, Energy Procedia 30
(2012) 321–330.
[64] B. Michel, N. Mazet, S. Mauran, D. Stitou, J. Xu, Thermochemical process for seasonal storage of solar energy:
Characterization and modeling of a high density reactive
bed, Energy.
[65] J. Fan, S. Furbo, E. Andersen, Z. Chen, B. Perers, M. Dannemand,
Thermal behavior of a heat exchanger module
for seasonal heat storage, Energy Procedia 30 (2012) 244–
254.
[66] T.-M. Tveit, T. Savola, A. Gebremedhin, C.-J. Fogelholm,
Multi-period minlp model for optimising operation and
structural changes to CHP plants in district heating networks
with long-term thermal storage, Energy Conversion
and Management 50 (3) (2009) 639–647.
[67] Hyprotech Corporation, HYSYS.Plant Steady State Modelling
(1998).
Published
2014-09-29
How to Cite
MILEWSKI, Jaroslaw; WOLOWICZ, Marcin; BUJALSKI, Wojciech. Methodology for choosing the optimum architecture of a STES system. Journal of Power Technologies, [S.l.], v. 94, n. 3, p. 153--164, sep. 2014. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/554>. Date accessed: 13 jan. 2025.
Section
Energy Conversion and Storage

Keywords

Seasonal Thermal Energy Storage; methodology; architecture

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.