Use of computer modeling for defect engineering in Czochralski silicon growth
Abstract
The yield and quality of silicon wafers are mostly determined by defects, including grain boundaries, dislocations, vacancies,interstitials, and vacancy and oxygen clusters. Active generation and multiplication of dislocations during Czochralski monosiliconcrystal growth is almost always followed by a transition to multicrystalline material and is called structure loss. Possiblefactors in structure loss are related to high thermal stresses, fluctuations of local crystallization rate caused by melt flowturbulence, melt undercooling and incorporation of solid particles from the melt into the crystal. Experimental analysis ofdislocation density distributions in grown crystals contributes to an understanding of the key reasons for structure loss: particleincorporation at the crystallization front and strong fluctuations of crystallization rate with temporal remelting. Comparison ofexperimental dislocation density measurements and modeling results calculated using the Alexander-Haasen model showedgood agreement for silicon samples. The Alexander-Haasen model provides reasonably accurate results for dislocationdensity accompanying structure loss phenomena and can be used to predict dislocation density and residual stresses inmulticrystalline Czochralski silicon ingots, which are grown for the purpose of manufacturing polysilicon rods for Siemensreactors and silicon construction elements.References
[1] Fraunhofer ise: Photovoltaics report, available online:
www.ise.fraunhofer.de/content/ dam/ise/de/documents/publications
/studies/photovoltaics-report.pdf (2018).
[2] M. S. Kulkarni, J. C. Holzer, L. W. Ferry, The agglomeration
dynamics of self-interstitials in growing czochralski silicon crystals,
Journal of Crystal Growth 284 (3) (2005) 353 – 368.
doi:10.1016/j.jcrysgro.2005.07.041.
[3] A. Vorob’ev, A. Sid’ko, V. Kalaev, Advanced chemical model for analysis
of cz and ds si-crystal growth, Journal of Crystal Growth 386 (2014)
226 – 234. doi:10.1016/j.jcrysgro.2013.10.022.
[4] V. Kalaev, A. Sattler, L. Kadinski, Crystal twisting in cz
si growth, Journal of Crystal Growth 413 (2015) 12 – 16.
doi:10.1016/j.jcrysgro.2014.12.005.
[5] O. Smirnova, N. Durnev, K. Shandrakova, E. Mizitov, V. Soklakov,
Optimization of furnace design and growth parameters for si
cz growth, using numerical simulation, Journal of Crystal Growth
310 (7) (2008) 2185 – 2191, the Proceedings of the 15th International
Conference on Crystal Growth (ICCG-15) in conjunction
with the International Conference on Vapor Growth and Epitaxy and
the US Biennial Workshop on Organometallic Vapor Phase Epitaxy.
doi:10.1016/j.jcrysgro.2007.11.204.
[6] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Investigation
of different cases of dislocation generation during industrial cz
silicon pulling, physica status solidi (c) 13 (10-12) (2016) 827–832.
doi:10.1002/pssc.201600063.
[7] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Characterization
of the loss of the dislocation-free growth during czochralski
silicon pulling, Journal of Crystal Growth 458 (2017) 120 – 128.
doi:10.1016/j.jcrysgro.2016.10.077.
[8] Y. Wang, K. Kakimoto, An in-situ x-ray topography observation of
dislocations, crystal-melt interface and melting of silicon, Microelectronic
Engineering 56 (1) (2001) 143 – 146, sub-Quarter-Micron Silicon
Issues in the 200/300 mm Conversion Era. doi:10.1016/S0167-
9317(00)00517-7.
[9] A. Giannattasio, S. Senkader, R. J. Falster, P. R. Wilshaw, Generation
of dislocation glide loops in czochralski silicon, Journal of Physics:
Condensed Matter 14 (48) (2002) 12981.
[10] H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond
structure, Vol. 22 of Solid State Physics, Academic Press, 1969, pp.
27 – 158. doi:10.1016/S0081-1947(08)60031-4.
[11] T. Wejrzanowski, K. J. Kurzydlowski, Stereology of grains in
nano-crystals, Solid State Phenomena 94 (2003) 221–228.
doi:10.4028/www.scientific.net/SSP.94.221.
[12] T. Wejrzanowski, W. Spychalski, K. Rozniatowski, K. Kurzydlowski, Image
based analysis of complex microstructures of engineering materials,
International Journal of Applied Mathematics and Computer Science
18 (1) (2008) 33–39. doi:10.2478/v10006-008-0003-1.
[13] F. Secco d’ Aragona, Dislocation etch for (100) planes in silicon,
Journal of The Electrochemical Society 119 (7) (1972) 948–951.
doi:10.1149/1.2404374.
[14] CGSim Flow Module, Theory Manual, Version 16.1, STR IP Holding,
Richmond, VA, USA, 2017.
[15] B. Gao, S. Nakano, K. Kakimoto, Highly efficient and stable implementation
of the alexander-haasen model for numerical analysis of dislocation
in crystal growth, Journal of Crystal Growth 369 (2013) 32 – 37.
doi:10.1016/j.jcrysgro.2013.01.039.
[16] V. N. Erofeev, V. I. Nikitenko, Comparison of theory of dislocation mobility
with experimental data for silicon, Soviet Physics Jetp 33 (5).
[17] V. Artemyev, A. Smirnov, V. Kalaev, V. Mamedov, A. Sidko, O. Podkopaev,
E. Kravtsova, A. Shimansky, Modeling of dislocation dynamics
in germanium czochralski growth, Journal of Crystal Growth 468
(2017) 443 – 447, the 18th International Conference on Crystal Growth
and Epitaxy (ICCGE-18). doi:10.1016/j.jcrysgro.2017.01.032.
[18] N. Miyazaki, H. Uchida, T. Munakata, K. Fujioka, Y. Sugino, Thermal
stress analysis of silicon bulk single crystal during czochralski growth,
Journal of Crystal Growth 125 (1) (1992) 102 – 111. doi:10.1016/0022-
0248(92)90325-D.
www.ise.fraunhofer.de/content/ dam/ise/de/documents/publications
/studies/photovoltaics-report.pdf (2018).
[2] M. S. Kulkarni, J. C. Holzer, L. W. Ferry, The agglomeration
dynamics of self-interstitials in growing czochralski silicon crystals,
Journal of Crystal Growth 284 (3) (2005) 353 – 368.
doi:10.1016/j.jcrysgro.2005.07.041.
[3] A. Vorob’ev, A. Sid’ko, V. Kalaev, Advanced chemical model for analysis
of cz and ds si-crystal growth, Journal of Crystal Growth 386 (2014)
226 – 234. doi:10.1016/j.jcrysgro.2013.10.022.
[4] V. Kalaev, A. Sattler, L. Kadinski, Crystal twisting in cz
si growth, Journal of Crystal Growth 413 (2015) 12 – 16.
doi:10.1016/j.jcrysgro.2014.12.005.
[5] O. Smirnova, N. Durnev, K. Shandrakova, E. Mizitov, V. Soklakov,
Optimization of furnace design and growth parameters for si
cz growth, using numerical simulation, Journal of Crystal Growth
310 (7) (2008) 2185 – 2191, the Proceedings of the 15th International
Conference on Crystal Growth (ICCG-15) in conjunction
with the International Conference on Vapor Growth and Epitaxy and
the US Biennial Workshop on Organometallic Vapor Phase Epitaxy.
doi:10.1016/j.jcrysgro.2007.11.204.
[6] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Investigation
of different cases of dislocation generation during industrial cz
silicon pulling, physica status solidi (c) 13 (10-12) (2016) 827–832.
doi:10.1002/pssc.201600063.
[7] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Characterization
of the loss of the dislocation-free growth during czochralski
silicon pulling, Journal of Crystal Growth 458 (2017) 120 – 128.
doi:10.1016/j.jcrysgro.2016.10.077.
[8] Y. Wang, K. Kakimoto, An in-situ x-ray topography observation of
dislocations, crystal-melt interface and melting of silicon, Microelectronic
Engineering 56 (1) (2001) 143 – 146, sub-Quarter-Micron Silicon
Issues in the 200/300 mm Conversion Era. doi:10.1016/S0167-
9317(00)00517-7.
[9] A. Giannattasio, S. Senkader, R. J. Falster, P. R. Wilshaw, Generation
of dislocation glide loops in czochralski silicon, Journal of Physics:
Condensed Matter 14 (48) (2002) 12981.
[10] H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond
structure, Vol. 22 of Solid State Physics, Academic Press, 1969, pp.
27 – 158. doi:10.1016/S0081-1947(08)60031-4.
[11] T. Wejrzanowski, K. J. Kurzydlowski, Stereology of grains in
nano-crystals, Solid State Phenomena 94 (2003) 221–228.
doi:10.4028/www.scientific.net/SSP.94.221.
[12] T. Wejrzanowski, W. Spychalski, K. Rozniatowski, K. Kurzydlowski, Image
based analysis of complex microstructures of engineering materials,
International Journal of Applied Mathematics and Computer Science
18 (1) (2008) 33–39. doi:10.2478/v10006-008-0003-1.
[13] F. Secco d’ Aragona, Dislocation etch for (100) planes in silicon,
Journal of The Electrochemical Society 119 (7) (1972) 948–951.
doi:10.1149/1.2404374.
[14] CGSim Flow Module, Theory Manual, Version 16.1, STR IP Holding,
Richmond, VA, USA, 2017.
[15] B. Gao, S. Nakano, K. Kakimoto, Highly efficient and stable implementation
of the alexander-haasen model for numerical analysis of dislocation
in crystal growth, Journal of Crystal Growth 369 (2013) 32 – 37.
doi:10.1016/j.jcrysgro.2013.01.039.
[16] V. N. Erofeev, V. I. Nikitenko, Comparison of theory of dislocation mobility
with experimental data for silicon, Soviet Physics Jetp 33 (5).
[17] V. Artemyev, A. Smirnov, V. Kalaev, V. Mamedov, A. Sidko, O. Podkopaev,
E. Kravtsova, A. Shimansky, Modeling of dislocation dynamics
in germanium czochralski growth, Journal of Crystal Growth 468
(2017) 443 – 447, the 18th International Conference on Crystal Growth
and Epitaxy (ICCGE-18). doi:10.1016/j.jcrysgro.2017.01.032.
[18] N. Miyazaki, H. Uchida, T. Munakata, K. Fujioka, Y. Sugino, Thermal
stress analysis of silicon bulk single crystal during czochralski growth,
Journal of Crystal Growth 125 (1) (1992) 102 – 111. doi:10.1016/0022-
0248(92)90325-D.
Published
2019-07-09
How to Cite
ARTEMYEV, Vladimir et al.
Use of computer modeling for defect engineering in Czochralski silicon growth.
Journal of Power Technologies, [S.l.], v. 99, n. 2, p. 163–169, july 2019.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1436>. Date accessed: 21 nov. 2024.
Issue
Section
Materials Science
Keywords
Czochralski silicon growth; Structure loss; Dislocation density
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).