Use of computer modeling for defect engineering in Czochralski silicon growth

  • Vladimir Artemyev STR Group, Inc., Engels av. 27, P.O. Box 89, St-Petersburg, 194156, Russia
  • Andrey Smirnov STR Group, Inc., Engels av. 27, P.O. Box 89, St-Petersburg, 194156, Russia Soft-Impact, Ltd., 27 Engelsa st., building 12B, 194156 St-Petersburg, Russia
  • Vladimir Kalaev STR Group, Inc., Engels av. 27, P.O. Box 89, St-Petersburg, 194156, Russia Soft-Impact, Ltd., 27 Engelsa st., building 12B, 194156 St-Petersburg, Russia
  • Vasif Mamedov Soft-Impact, Ltd., 27 Engelsa st., building 12B, 194156 St-Petersburg, Russia
  • Tomasz Wejrzanowski Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Mateusz Grybczuk Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Peter Dold Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eissfeldt-Strasse 12, 06120 Halle, Germany
  • Roland Kunert Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eissfeldt-Strasse 12, 06120 Halle, Germany

Abstract

The yield and quality of silicon wafers are mostly determined by defects, including grain boundaries, dislocations, vacancies,interstitials, and vacancy and oxygen clusters. Active generation and multiplication of dislocations during Czochralski monosiliconcrystal growth is almost always followed by a transition to multicrystalline material and is called structure loss. Possiblefactors in structure loss are related to high thermal stresses, fluctuations of local crystallization rate caused by melt flowturbulence, melt undercooling and incorporation of solid particles from the melt into the crystal. Experimental analysis ofdislocation density distributions in grown crystals contributes to an understanding of the key reasons for structure loss: particleincorporation at the crystallization front and strong fluctuations of crystallization rate with temporal remelting. Comparison ofexperimental dislocation density measurements and modeling results calculated using the Alexander-Haasen model showedgood agreement for silicon samples. The Alexander-Haasen model provides reasonably accurate results for dislocationdensity accompanying structure loss phenomena and can be used to predict dislocation density and residual stresses inmulticrystalline Czochralski silicon ingots, which are grown for the purpose of manufacturing polysilicon rods for Siemensreactors and silicon construction elements.

References

[1] Fraunhofer ise: Photovoltaics report, available online:
www.ise.fraunhofer.de/content/ dam/ise/de/documents/publications
/studies/photovoltaics-report.pdf (2018).
[2] M. S. Kulkarni, J. C. Holzer, L. W. Ferry, The agglomeration
dynamics of self-interstitials in growing czochralski silicon crystals,
Journal of Crystal Growth 284 (3) (2005) 353 – 368.
doi:10.1016/j.jcrysgro.2005.07.041.
[3] A. Vorob’ev, A. Sid’ko, V. Kalaev, Advanced chemical model for analysis
of cz and ds si-crystal growth, Journal of Crystal Growth 386 (2014)
226 – 234. doi:10.1016/j.jcrysgro.2013.10.022.
[4] V. Kalaev, A. Sattler, L. Kadinski, Crystal twisting in cz
si growth, Journal of Crystal Growth 413 (2015) 12 – 16.
doi:10.1016/j.jcrysgro.2014.12.005.
[5] O. Smirnova, N. Durnev, K. Shandrakova, E. Mizitov, V. Soklakov,
Optimization of furnace design and growth parameters for si
cz growth, using numerical simulation, Journal of Crystal Growth
310 (7) (2008) 2185 – 2191, the Proceedings of the 15th International
Conference on Crystal Growth (ICCG-15) in conjunction
with the International Conference on Vapor Growth and Epitaxy and
the US Biennial Workshop on Organometallic Vapor Phase Epitaxy.
doi:10.1016/j.jcrysgro.2007.11.204.
[6] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Investigation
of different cases of dislocation generation during industrial cz
silicon pulling, physica status solidi (c) 13 (10-12) (2016) 827–832.
doi:10.1002/pssc.201600063.
[7] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Characterization
of the loss of the dislocation-free growth during czochralski
silicon pulling, Journal of Crystal Growth 458 (2017) 120 – 128.
doi:10.1016/j.jcrysgro.2016.10.077.
[8] Y. Wang, K. Kakimoto, An in-situ x-ray topography observation of
dislocations, crystal-melt interface and melting of silicon, Microelectronic
Engineering 56 (1) (2001) 143 – 146, sub-Quarter-Micron Silicon
Issues in the 200/300 mm Conversion Era. doi:10.1016/S0167-
9317(00)00517-7.
[9] A. Giannattasio, S. Senkader, R. J. Falster, P. R. Wilshaw, Generation
of dislocation glide loops in czochralski silicon, Journal of Physics:
Condensed Matter 14 (48) (2002) 12981.
[10] H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond
structure, Vol. 22 of Solid State Physics, Academic Press, 1969, pp.
27 – 158. doi:10.1016/S0081-1947(08)60031-4.
[11] T. Wejrzanowski, K. J. Kurzydlowski, Stereology of grains in
nano-crystals, Solid State Phenomena 94 (2003) 221–228.
doi:10.4028/www.scientific.net/SSP.94.221.
[12] T. Wejrzanowski, W. Spychalski, K. Rozniatowski, K. Kurzydlowski, Image
based analysis of complex microstructures of engineering materials,
International Journal of Applied Mathematics and Computer Science
18 (1) (2008) 33–39. doi:10.2478/v10006-008-0003-1.
[13] F. Secco d’ Aragona, Dislocation etch for (100) planes in silicon,
Journal of The Electrochemical Society 119 (7) (1972) 948–951.
doi:10.1149/1.2404374.
[14] CGSim Flow Module, Theory Manual, Version 16.1, STR IP Holding,
Richmond, VA, USA, 2017.
[15] B. Gao, S. Nakano, K. Kakimoto, Highly efficient and stable implementation
of the alexander-haasen model for numerical analysis of dislocation
in crystal growth, Journal of Crystal Growth 369 (2013) 32 – 37.
doi:10.1016/j.jcrysgro.2013.01.039.
[16] V. N. Erofeev, V. I. Nikitenko, Comparison of theory of dislocation mobility
with experimental data for silicon, Soviet Physics Jetp 33 (5).
[17] V. Artemyev, A. Smirnov, V. Kalaev, V. Mamedov, A. Sidko, O. Podkopaev,
E. Kravtsova, A. Shimansky, Modeling of dislocation dynamics
in germanium czochralski growth, Journal of Crystal Growth 468
(2017) 443 – 447, the 18th International Conference on Crystal Growth
and Epitaxy (ICCGE-18). doi:10.1016/j.jcrysgro.2017.01.032.
[18] N. Miyazaki, H. Uchida, T. Munakata, K. Fujioka, Y. Sugino, Thermal
stress analysis of silicon bulk single crystal during czochralski growth,
Journal of Crystal Growth 125 (1) (1992) 102 – 111. doi:10.1016/0022-
0248(92)90325-D.
Published
2019-07-09
How to Cite
ARTEMYEV, Vladimir et al. Use of computer modeling for defect engineering in Czochralski silicon growth. Journal of Power Technologies, [S.l.], v. 99, n. 2, p. 163–169, july 2019. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1436>. Date accessed: 21 dec. 2024.
Section
Materials Science

Keywords

Czochralski silicon growth; Structure loss; Dislocation density

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.