A High Step up DC/DC Converter with Reduced Input Current Ripple
Abstract
In this paper, a modified DC/DC high step up converter is proposed. Maximum power point tracking, which is very importantin photovoltaic (PV) applications, is dependent on input current ripple of the PVs. In some other converters where the inputcurrent ripple is high, maximum power point cannot track properly. Therefore the proposed converter is designed based onthe premise of reducing input current ripple compatible with the photovoltaic energy sources. The converter has six differentmodes, which are detailed in this paper. All inductor currents are illustrated and the sizing of the inductors used in theproposed structure calculated. The output voltage gain and input current ripple are investigated. The proposed converter iscompared to other recent high step up converters from the angle of input current ripple. Finally, simulations are done in thePSCAD/EMTDC software package to verify the operations of the proposed converter.References
[1] P. Nema, R. Nema, S. Rangnekar, A current and future state of art
development of hybrid energy system using wind and pv-solar: A
review, Renewable and Sustainable Energy Reviews 13 (8) (2009)
2096–2103.
[2] Y. A. Gandomi, T. A. Zawodzinski, M. M. Mench, Concentrated solution
model of transport in all vanadium redox flow battery membrane
separator, ECS Transactions 61 (13) (2014) 23–32.
[3] J. D. Guggenberger, A. C. Elmore, J. L. Tichenor, M. L. Crow, Performance
prediction of a vanadium redox battery for use in portable, scalable
microgrids, IEEE Transactions on smart Grid 3 (4) (2012) 2109–
2116.
[4] Y. A. Gandomi, M. Edmundson, F. Busby, M. M. Mench, Water management
in polymer electrolyte fuel cells through asymmetric thermal
and mass transport engineering of the micro-porous layers, Journal of
The Electrochemical Society 163 (8) (2016) F933–F944.
[5] Y. A. Gandomi, D. Aaron, T. Zawodzinski, M. Mench, In situ potential
distribution measurement and validated model for all-vanadium redox
flow battery, Journal of The Electrochemical Society 163 (1) (2016)
A5188–A5201.
[6] Y. A. Gandomi, D. Aaron, M. Mench, Coupled membrane transport parameters
for ionic species in all-vanadium redox flow batteries, Electrochimica
Acta 218 (2016) 174–190.
[7] Q. Li, P. Wolfs, A review of the single phase photovoltaic module integrated
converter topologies with three different dc link configurations,
IEEE Transactions on Power Electronics 23 (3) (2008) 1320–1333.
[8] K. Strunz, E. Abbasi, D. N. Huu, Dc microgrid for wind and solar power
integration, IEEE Journal of emerging and selected topics in Power
Electronics 2 (1) (2013) 115–126.
[9] V. Benda, Photovoltaics towards terawatts–progress in photovoltaic
cells and modules, IET Power Electronics 8 (12) (2015) 2343–2351.
[10] W. Chen, Y. Duan, L. Guo, Y. Xuan, X. Yang, Modeling and prediction of
Figure 13: The voltage and current waveform of L2
radiated emission from solar cell in a photovoltaic generation system,
IEEE Journal of Photovoltaics 6 (2) (2016) 540–545.
[11] A. Tofighi, Performance evaluation of pv module by dynamic thermal
model, Journal of Power Technologies 93 (2) (2013) 111–121.
[12] A. El Shahat, Pv module optimum operation modeling, Journal of
Power technologies 94 (1) (2014) 50–66.
[13] M.-K. Nguyen, Y.-C. Lim, J.-H. Choi, G.-B. Cho, Isolated high step-up
dc–dc converter based on quasi-switched-boost network, IEEE Transactions
on Industrial Electronics 63 (12) (2016) 7553–7562.
[14] A. Chub, D. Vinnikov, F. Blaabjerg, F. Z. Peng, A review of galvanically
isolated impedance-source dc–dc converters, IEEE Transactions on
Power Electronics 31 (4) (2015) 2808–2828.
[15] A. A. Gandomi, S. Saeidabadi, S. H. Hosseini, E. Babaei, M. Sabahi,
Transformer-based inverter with reduced number of switches for renewable
energy applications, IET Power Electronics 8 (10) (2015)
1875–1884.
[16] H. Liu, H. Hu, H. Wu, Y. Xing, I. Batarseh, Overview of high-step-up
coupled-inductor boost converters, IEEE Journal of Emerging and Selected
Topics in Power Electronics 4 (2) (2016) 689–704.
[17] G. Chen, Y. Deng, Y. Tao, X. He, Y. Wang, Y. Hu, Topology derivation
and generalized analysis of zero-voltage-switching synchronous dc–
dc converters with coupled inductors, IEEE Transactions on Industrial
Electronics 63 (8) (2016) 4805–4815.
[18] P. Saadat, K. Abbaszadeh, A single-switch high step-up dc–dc converter
based on quadratic boost, IEEE Transactions on Industrial Electronics
63 (12) (2016) 7733–7742.
[19] L. He, Y. Liao, An advanced current-autobalance high step-up converter
with a multicoupled inductor and voltage multiplier for a renewable
power generation system, IEEE Transactions on Power Electronics
31 (10) (2015) 6992–7005.
[20] G. Wu, X. Ruan, Z. Ye, Nonisolated high step-up dc–dc converters
adopting switched-capacitor cell, IEEE Transactions on Industrial Electronics
62 (1) (2014) 383–393.
[21] B. Axelrod, Y. Berkovich, A. Ioinovici, Switched-capacitor/switchedinductor
structures for getting transformerless hybrid dc–dc pwm converters,
IEEE Transactions on Circuits and Systems I: Regular Papers
55 (2) (2008) 687–696.
[22] X. Hu, C. Gong, A high voltage gain dc–dc converter integrating
coupled-inductor and diode–capacitor techniques, IEEE transactions
on power electronics 29 (2) (2013) 789–800.
[23] Y. J. A. Alcazar, D. de Souza Oliveira, F. L. Tofoli, R. P. Torrico-Bascopé,
Dc–dc nonisolated boost converter based on the three-state switching
cell and voltage multiplier cells, IEEE Transactions on Industrial Electronics 60 (10) (2012) 4438–4449.
[24] W. Li, X. He, Review of nonisolated high-step-up dc/dc converters in
photovoltaic grid-connected applications, IEEE Transactions on Industrial
Electronics 58 (4) (2010) 1239–1250.
[25] A. H. El Khateb, N. A. Rahim, J. Selvaraj, B. W. Williams, Dc-to-dc
converter with low input current ripple for maximum photovoltaic power
extraction, IEEE Transactions on Industrial Electronics 62 (4) (2014)
2246–2256.
[26] M. Schuck, R. C. Pilawa-Podgurski, Ripple minimization through harmonic
elimination in asymmetric interleaved multiphase dc–dc converters,
IEEE Transactions on Power Electronics 30 (12) (2015) 7202–
7214.
[27] H. Feyzi, R. Gholizadeh-Roshanagh, M. Sabahi, S. Najafi-
Ravadanegh, Incorporating dc–dc boost converters in power flow studies,
Journal of Power Technologies 97 (1) (2017) 28–34.
[28] J. C. Rosas-Caro, F. Mancilla-David, J. C. Mayo-Maldonado, J. M.
Gonzalez-Lopez, H. L. Torres-Espinosa, J. E. Valdez-Resendiz, A
transformer-less high-gain boost converter with input current ripple
cancelation at a selectable duty cycle, IEEE Transactions on Industrial
Electronics 60 (10) (2012) 4492–4499.
development of hybrid energy system using wind and pv-solar: A
review, Renewable and Sustainable Energy Reviews 13 (8) (2009)
2096–2103.
[2] Y. A. Gandomi, T. A. Zawodzinski, M. M. Mench, Concentrated solution
model of transport in all vanadium redox flow battery membrane
separator, ECS Transactions 61 (13) (2014) 23–32.
[3] J. D. Guggenberger, A. C. Elmore, J. L. Tichenor, M. L. Crow, Performance
prediction of a vanadium redox battery for use in portable, scalable
microgrids, IEEE Transactions on smart Grid 3 (4) (2012) 2109–
2116.
[4] Y. A. Gandomi, M. Edmundson, F. Busby, M. M. Mench, Water management
in polymer electrolyte fuel cells through asymmetric thermal
and mass transport engineering of the micro-porous layers, Journal of
The Electrochemical Society 163 (8) (2016) F933–F944.
[5] Y. A. Gandomi, D. Aaron, T. Zawodzinski, M. Mench, In situ potential
distribution measurement and validated model for all-vanadium redox
flow battery, Journal of The Electrochemical Society 163 (1) (2016)
A5188–A5201.
[6] Y. A. Gandomi, D. Aaron, M. Mench, Coupled membrane transport parameters
for ionic species in all-vanadium redox flow batteries, Electrochimica
Acta 218 (2016) 174–190.
[7] Q. Li, P. Wolfs, A review of the single phase photovoltaic module integrated
converter topologies with three different dc link configurations,
IEEE Transactions on Power Electronics 23 (3) (2008) 1320–1333.
[8] K. Strunz, E. Abbasi, D. N. Huu, Dc microgrid for wind and solar power
integration, IEEE Journal of emerging and selected topics in Power
Electronics 2 (1) (2013) 115–126.
[9] V. Benda, Photovoltaics towards terawatts–progress in photovoltaic
cells and modules, IET Power Electronics 8 (12) (2015) 2343–2351.
[10] W. Chen, Y. Duan, L. Guo, Y. Xuan, X. Yang, Modeling and prediction of
Figure 13: The voltage and current waveform of L2
radiated emission from solar cell in a photovoltaic generation system,
IEEE Journal of Photovoltaics 6 (2) (2016) 540–545.
[11] A. Tofighi, Performance evaluation of pv module by dynamic thermal
model, Journal of Power Technologies 93 (2) (2013) 111–121.
[12] A. El Shahat, Pv module optimum operation modeling, Journal of
Power technologies 94 (1) (2014) 50–66.
[13] M.-K. Nguyen, Y.-C. Lim, J.-H. Choi, G.-B. Cho, Isolated high step-up
dc–dc converter based on quasi-switched-boost network, IEEE Transactions
on Industrial Electronics 63 (12) (2016) 7553–7562.
[14] A. Chub, D. Vinnikov, F. Blaabjerg, F. Z. Peng, A review of galvanically
isolated impedance-source dc–dc converters, IEEE Transactions on
Power Electronics 31 (4) (2015) 2808–2828.
[15] A. A. Gandomi, S. Saeidabadi, S. H. Hosseini, E. Babaei, M. Sabahi,
Transformer-based inverter with reduced number of switches for renewable
energy applications, IET Power Electronics 8 (10) (2015)
1875–1884.
[16] H. Liu, H. Hu, H. Wu, Y. Xing, I. Batarseh, Overview of high-step-up
coupled-inductor boost converters, IEEE Journal of Emerging and Selected
Topics in Power Electronics 4 (2) (2016) 689–704.
[17] G. Chen, Y. Deng, Y. Tao, X. He, Y. Wang, Y. Hu, Topology derivation
and generalized analysis of zero-voltage-switching synchronous dc–
dc converters with coupled inductors, IEEE Transactions on Industrial
Electronics 63 (8) (2016) 4805–4815.
[18] P. Saadat, K. Abbaszadeh, A single-switch high step-up dc–dc converter
based on quadratic boost, IEEE Transactions on Industrial Electronics
63 (12) (2016) 7733–7742.
[19] L. He, Y. Liao, An advanced current-autobalance high step-up converter
with a multicoupled inductor and voltage multiplier for a renewable
power generation system, IEEE Transactions on Power Electronics
31 (10) (2015) 6992–7005.
[20] G. Wu, X. Ruan, Z. Ye, Nonisolated high step-up dc–dc converters
adopting switched-capacitor cell, IEEE Transactions on Industrial Electronics
62 (1) (2014) 383–393.
[21] B. Axelrod, Y. Berkovich, A. Ioinovici, Switched-capacitor/switchedinductor
structures for getting transformerless hybrid dc–dc pwm converters,
IEEE Transactions on Circuits and Systems I: Regular Papers
55 (2) (2008) 687–696.
[22] X. Hu, C. Gong, A high voltage gain dc–dc converter integrating
coupled-inductor and diode–capacitor techniques, IEEE transactions
on power electronics 29 (2) (2013) 789–800.
[23] Y. J. A. Alcazar, D. de Souza Oliveira, F. L. Tofoli, R. P. Torrico-Bascopé,
Dc–dc nonisolated boost converter based on the three-state switching
cell and voltage multiplier cells, IEEE Transactions on Industrial Electronics 60 (10) (2012) 4438–4449.
[24] W. Li, X. He, Review of nonisolated high-step-up dc/dc converters in
photovoltaic grid-connected applications, IEEE Transactions on Industrial
Electronics 58 (4) (2010) 1239–1250.
[25] A. H. El Khateb, N. A. Rahim, J. Selvaraj, B. W. Williams, Dc-to-dc
converter with low input current ripple for maximum photovoltaic power
extraction, IEEE Transactions on Industrial Electronics 62 (4) (2014)
2246–2256.
[26] M. Schuck, R. C. Pilawa-Podgurski, Ripple minimization through harmonic
elimination in asymmetric interleaved multiphase dc–dc converters,
IEEE Transactions on Power Electronics 30 (12) (2015) 7202–
7214.
[27] H. Feyzi, R. Gholizadeh-Roshanagh, M. Sabahi, S. Najafi-
Ravadanegh, Incorporating dc–dc boost converters in power flow studies,
Journal of Power Technologies 97 (1) (2017) 28–34.
[28] J. C. Rosas-Caro, F. Mancilla-David, J. C. Mayo-Maldonado, J. M.
Gonzalez-Lopez, H. L. Torres-Espinosa, J. E. Valdez-Resendiz, A
transformer-less high-gain boost converter with input current ripple
cancelation at a selectable duty cycle, IEEE Transactions on Industrial
Electronics 60 (10) (2012) 4492–4499.
Published
2019-09-19
How to Cite
HASSANPOUR, Naser; ASHRAF GANDOMI, Amin; SABAHI, Mehran.
A High Step up DC/DC Converter with Reduced Input Current Ripple.
Journal of Power Technologies, [S.l.], v. 99, n. 3, p. 187–194, sep. 2019.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1067>. Date accessed: 21 nov. 2024.
Issue
Section
Power Converters
Keywords
High step up converter, DC/DC converter, input current ripple, inductor sizing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).