(0000) Direct carbon, integrated gasification, and deposited carbon solid oxide fuel cells: a patent-based review of technological status

Marek Skrzypkiewicz, Szymon Obrębowski

Abstract


This review presents three directions in solid oxide fuel cell (SOFC) technology development involving solid-state carbon in some stage of the fuel-to-electricity conversion process: direct carbon (DC-SOFC), integrated gasification (IG-SOFC) and deposited carbon (rechargeable SOFC). Recent achievements of science and technology were studied in order to identify the most widely developed concepts. Apart from that, the review contains a statistical approach to the published patents and articles providing the names and countries of institutions active in the field. Simultaneous development of all three technologies can bring a synergy towards a major breakthrough in efficiency of coal-fired power plants.

Keywords


Direct Carbon Fuel Cell; DC-SOFC; DCFC; IG-SOFC; Clean Coal Technologies

Full Text:

PDF

References


International Energy Agency, Key World Energy Statistics, 2015.

T. Chmielniak, H. Łukowicz, Wysoko sprawne „zero-emisyjne” bloki węglowe zintegrowane z wychwytem CO2 ze spalin. Polityka Energetyczna (Energy Policy Journal) 2012;15(3):91-106.

H. Ghezel-Ayagh, Advances in SOFC development at fuelcell energy, in: 14th Annual SECA Workshop, Pittsburgh, PA, July 23-24, 2013.

http://www.siemens.com/stories/cc/en/record-breaking-power-plant/#chapter-solution , accessed on 3.09.2016.

J. Kupecki, J. Jewulski, K. Motylinski, Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes, International Journal of Hydrogen Energy 2015;40(35):11633-11640.

J. Kupecki, Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME, International Journal of Hydrogen Energy 2015;40(35):12009 -12022.

J. Kupecki, Modeling platform for a micro-CHP system with SOFC operating under load changes, Applied Mechanics and Materials 2014;607:205-208.

J. Kupecki, J. Milewski, K. Badyda, J. Jewulski, Evaluation of Sensitivity of a Micro-CHP Unit Performance to SOFC Parameters, ECS Transactions 2013;51(1):107-116.

J. Kupecki, M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas, International Journal of Hydrogen Energy, in press, http://dx.doi.org/10.1016/j.ijhydene.2016.07.222.

S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M. C. Romano, Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases. Journal of Power Sources 324 (2016) 598-614.

M. Williams, T. Horita, K. Yamagi, H. Yokokawa, An Application of Solid Particles in Fuel Cell Technology. KONA No.25 (2007) 153-161.

T. M. Gür, Critical Review of Carbon Conversion in Carbon Fuel Cells. Chem. Rev. 2013, 113, 6179−6206.

B. Heydorn, S. Crouch-Baker, Direct carbon conversion - progressions of power. Institute of Physics and IOP Publishing, 2006.

S. Giddey, S. P. S. Badwal, A. Kulkarni, C. Munnings, A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science 2012;38:360-399.

K. Hemmes, J.F. Cooper, J.R. Selman, Recent insights concerning DCFC development: 1998-2012. International Journal of Hydrogen Energy 38 (2013) 8503-8513.

Y. Bai, Y. Liu, Y. Tang, Y. Xie, J. Liu, Direct carbon solid oxide Fuel Cell - a potential high performance battery. International Journal of Hydrogen Energy 2011;36:9189-9194.

T. M. Gür, Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels. Final Scientific/Technical report, Direct Carbon Technologies, DOE Award No. DE-NT0004395.

T. M. Gür, M. Homel, A. V. Virkar, High performance solid oxide fuel cell operating on dry gasified coal. Journal of Power Sources 2010;195:1085-1090.

D. R. Lide. CRC Handbook of chemistry and physics, 87th edition, 2006-2007.

R. O'Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals. John Wiley & Sons, New York, 2006.

A. C. Chien, S. S. C. Chuang, Effect of gas flow rates and Boudouard reactions on the performance of Ni/YSZ anode supported solid oxide fuel cells with solid carbon fuels. Journal of Power Sources 2011;196:4719-4723.

S. L. Jain, Y. Nabae, B. J. Lakeman, K. D. Pointon, J. T. S. Irvine, Solid state electrochemistry of direct carbon/air fuel cells. Solid State Ionics 2008;179:1417–1421.

P. Desclaux, S. Nürnberger, M. Rzepka, U. Stimming, Investigation of direct carbon conversion at the surface of a YSZ electrolyte in a SOFC. International Journal of Hydrogen Energy 2011;36:10278-10281.

R. Wolk, Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems. Report to the CMS Review Committee 2004;Report No.UCRL-SR-203880.

J. F. Cooper, Direct Conversion of Coal Derived Carbon in Fuel Cells. Recent Trends in Fuel Cell Science and Technology, 2007, 248-266.

M. Ihara, S. Hasegawa, K. Yamahara, United States Patent No.: US8309272B2.

M. Ihara, S. Hasegawa, K. Yamahara, Japanese Patent No.: JP5284596B2.

E. Masahiro, M. Ihara, Japanese Patent No.: JP5344565B2.

M. Ihara, K. Naganari, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Japanese Patent No.: JP5489327B2.

M. Ihara, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Japanese Patent No.: JP5495377B2.

M. Ihara, S. Hasegawa, K. Yamahara, Canadian Patent No.: CA2647249C.

J. P. Kim, C. H. Jeon, J. H. Song, G. B. Kim, Y. G. Kim, Republic of Korea Patent No.: KR101010535B1.

C. H. Jeon, J. P. Kim, Y. J. Chang, S. K. Lee, W. S. Son, S. Y. Kim, S. D. Lee, S. K. Lee, Republic of Korea Patent No.: KR101223645B1.

C. H. Jeon, J. P. Kim, S. M. Kim, Republic of Korea Patent No.: KR101477195B1.

C. H. Jeon, J. P. Kim, S. M. Kim, United States Patent No.: US9257713B2.

J. P. Kim, H. Lim, C. H. Jeon, Y. J. Chang, K. N. Koh, S. M. Choi, J. H. Song, Performance evaluation of tubular fuel cells fuelled by pulverized graphite. Journal of Power Sources 2010;195:7568-7573.

J. P. Kim, H. K. Choi, Y. J. Chang, C. H. Jeon, Feasibility of using ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell. International Journal of Hydrogen Energy 2012;37:11401-11408.

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Republic of China Utility Model No.: CN202004100U.

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Republic of China Utility Model No.: CN202034437U.

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Republic of China Patent No.: CN102170009B.

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Republic of China Patent No.: CN102185149B.

X. Yu, Y. Shi, H. Wang, N. Cai, C. Li, R. I. Tomov, J. Hanna, B. A. Glowacki, A. F. Ghoniem, Experimental characterization and elementary reaction modeling. Journal of Power Sources 2013;243:159-171.

T. M. Gür, R. Huggins, United States Patent No.: US5376469A.

T. M. Gür, United States Patent No.: US7799472B2.

T. M. Gür, R. E. Mitchell, L. Andrew, L. Siewen, United States Patent No.: US8563183B2.

A. C. Lee, S. Li, R. E. Mitchell, T. M. Gür, Conversion of Solid Carbonaceous Fuels in a Fluidized Bed Fuel Cell. Electrochem. Solid-State Lett. 2008;11:B20-B23.

S. Li, A. C. Lee, R. E. Mitchell, T. M. Gür, Direct carbon conversion in a helium fluidized bed fuel cell. Solid State Ionics 2008;179:1549-1552.

A. C. Lee, R. E. Mitchell, T. M. Gür, Thermodynamic analysis of gasification-driven direct carbon fuel cells. Journal of Power Sources 2009;194:774-785.

T. M. Gür, Mechanistic Modes fos Solid Carbon Conversion in High Temperature Fuel Cells. J. Electrochem. Soc. 2010;157:B751-B759.

M. Homel, T. M. Gür, J. H. Koh, A. V. Virkar, Carbon monoxide-fueled solid oxide fuel cell. Journal of Power Sources 2010;195:6367-6372.

J. Jewulski, M. Skrzypkiewicz, S. Obrębowski, Republic of Poland Patent No.: PL405205B.

J. Jewulski, M. Skrzypkiewicz, S. Obrębowski, Republic of Poland Patent No.: PL405206B.

M. Dudek, P. Tomczyk, K. L. Juda, R. Tomov, B. A. Glowacki, S. Batty, P. Risby, R. Socha, Comparison of the Performances of DCFC Fuelled with the Product of Methane RF Plasma Reforming and Carbon Black. Int. J. Electrochem. Sci. 2012;7:6704-6721.

M. Dudek, R. I. Tomov, C. Wang, B.A. Glowacki, P. Tomczyk, R. P. Socha, M. Mosiałek, Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology. Electrochimica Acta 105 (2013) 412-418.

M. Dudek, P. Tomczyk, R. Socha, M. Skrzypkiewicz, J. Jewulski, Biomass Fuels for Direct Carbon Fuel Cell with Solid Oxide Electrolyte Int. J. Electrochem. Sci. 2013;8:3229-3253.

J. Jewulski, M. Skrzypkiewicz, Direct carbon fuel cells based on solid oxide electrolyte technology. Przegląd elektrotechniczny 2013;89:268-270.

J. Jewulski, M. Skrzypkiewicz, M. Struzik, I. Lubarska-Radziejewska, Lignite as a fuel for direct carbon fuel cell system. International Journal of Hydrogen Energy 39 (2014) 21778-21785.

R. Antunes, M. Skrzypkiewicz, Chronoamperometric investigations of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell, International Journal of Hydrogen Energy 40 (2015) 4357-4369.

M. Skrzypkiewicz., J. Jewulski., I. Lubarska-Radziejewska, The effect of Fe2O3 catalyst on direct carbon fuel cell performance. International Journal of Hydrogen Energy 40 (2015) 13090-13098.

M. Dudek, M. Skrzypkiewicz, N. Moskała, P. Grzywacz, M. Sitarz, I. Lubarska-Radziejewska, The impact of physicochemical properties of coal on direct carbon solid oxide fuel cells, International Journal of Hydrogen Energy 41 (2016) 18872-18883.

M. Skrzypkiewicz, M. Dudek, Carbon as a fuel for efficient electricity generation in carbon solid oxide fuel cells. E3S Web of Conferences 10 (2016) 00116.

M. Dudek, M. Skrzypkiewicz, N. Moskała, P. Grzywacz, M. Sitarz, I. Lubarska-Radziejewska, The impact of physicochemical properties of coal on direct carbon solid oxide fuel cells. Int. J. Hydrogen Energy 41 (2016) 18872-18883.

C. N. Li, Republic of China Patent No.: CN100440597C.

N. Cai, C. Li, Y. Shi, Republic of China Patent No.: CN100595959C.

Y. Shi, N. Cai, H. Wang, Republic of China Patent Application Publication No.: CN102324539A.

X. Y. Zhao, Q. Yao, S. Q. Li, N. S. Cai, Studies on the carbon reactions in the anode of deposited carbon fuel cells. Journal of Power Sources 2008;185:104-111.

C. Li, Y. Shi, N. Cai, Performance improvement of direct carbon fuel cell by introducing catalytic gasification process. Journal of Power Sources 2010;195:4660-4666.

C. Li, Y. Shi, N. Cai, Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics. Journal of Power Sources 2011;196:4588-4593.

C. Li, Y. Shi, N. Cai, Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell. Journal of Power Sources 2011;196:754-763.

J. H. Yoo, H. K. Choi, S. D. Kim, S. H. Lee, Y. J. Rhim, Republic of Korea Patent No.: KR101177648B1.

T. H. Lim, R. H. Song, S. J. Park, S. B. Lee, J. W. Lee, B. J. Jung, N. Y. Lee, Republic of Korea Patent No.: KR101451904B1.

T. H. Lim, S. K. Kim, U. J. Yun, J. W. Lee, S. B. Lee, S. J. Park, R. H. Song, Performance characteristic of a tubular carbon-based fuel cell short stack coupled with a dry carbon gasifier. International Journal of Hydrogen Energy 2014;39:12395-12401.

H. Ju, J. Eom, J. K. Lee, H. Choi, T. H. Lim, R. H. Song, J. Lee, Durable power performance of a direct ash-free coal fuel cell. Electrochim Acta 2014;115:511-517.

J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, United States Patent No.: US9406946B2.

J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Republic of Korea Patent No.: KR101647294B1.

H. Jang, J. D. Ocon, S. Lee, J. K. Lee, J. Lee, Direct power generation from waste coffee grounds in a biomass fuel cell. Journal of Power Sources 296 (2015) 433-439.

S. Chuang, United Stated Patent No.: US8940454B2.

S. Chuang, Russian Federation Patent No.: RU2420833C2.

A. J. Zillmer, J. P. Carroll, United States Patent No.: US7826054B2.

A. J. Zillmer, J. P. Carroll, European Patent No.: EP1988382B1.

J. Liu, Y. Liu, Y. Tang, Y. Bai, Republic of China Patent No.: CN102130354B.

Y. Tang, J. Liu, Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy 2010;35:11188-11193.

Y. Bai, C. Wang, J. Ding, C. Jin, J. Liu, Direct operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell stack with methane. Journal of Power Sources 2010;195:3882-3886.

Y. Xie, Y. Tang, J. Liu, A verification of the reaction mechanism of direct carbon solid oxide fuel cells. J Solid State Electrochem 17 (2013) 121-127.

L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, M. Liu, Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells. Journal of Alloys and Compounds 608 (2014) 272-277.

Y. Xie, W. Cai, J. Xiao, Y. Tang, J. Liu, M. Liu, Electrochemical gas–electricity cogeneration through direct carbon solid oxide fuel cells. Journal of Power Sources 277 (2015) 1-8.

W. Cai, Q. Zhou, Y. Xie, J. Liu, A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells. Fuel 159 (2015) 887–893.

H. Lyu, W. Tian, W. Wang, Y. Jiao, S. Li, Republic of China Patent No.: CN203871426U.

Y. Jiao, W. Tian, H. Chen, H. Shi, B. Yang, C. Li, Z. Shao, Z. Zhu, S. D. Li, In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. Applied Energy 141 (2015) 200–208.

Y. Jiao, J. Zhao, W. An, L. Zhang, Y. Sha, G. Yang, Z. Shao, Z. Zhu, S. D. Li, Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance. Journal of Power Sources 288 (2015) 106-114.

Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S. D. Li, Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane. Energy 113 (2016) 432-443.

S. Wang, Q. Gao, L. Shao, C. Zhang, C. Yuan, X. Liu, T. Wei, C. Ji, Republic of China Patent No.: CN103078128B.

R. Liu, C. Zhao, J. Li, F. Zeng, S. Wang, T. Wen, Z. Wen, A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells. Journal of Power Sources 2010;195:480-482.

J. Zhou, X. F. Ye, L. Shao, X. P. Zhang, J. Q. Qian, S. R. Wang, A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology. Electrochimica Acta 2012;74:267-270.

T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, United States Patent No.: US6183896B1.

J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Republic of Korea Patent No.: KR101350456B1.

J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, United States Patent Application Publication No.: US2015180063A1.

M. Ihara, Y. Chiaki, Japanese Patent No.: JP4504642B2.

S. G. Kim, S. C. Hwang, S. T. Kuk, C. M. Yang, Republic of Korea Patent No.: KR101351324B1.

R. D. Brost, United States Patent No.: US8850826B1.

Q. Fan, R. Liu, United States Patent No.: US7745026B2.

R. Chandran, United States Patent No.: US8968433B2.

M. Dudek, P. Tomczyk, Composite fuel for direct carbon fuel cell. Catalysis Today 2011;176:388-392.

M. Dudek, Republic of Poland Patent Application No.: PL410775A1.

M. Dudek, P. Tomczyk, R. Socha, M. Hamaguchi, Use of ash-free “Hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide electrolyte, Int J Hydrogen Energy 2014; 39: 12386–12394.

M. Dudek, On the utilization of coal samples in direct carbon solid oxide fuel cell technology, Solid State Ionics 271 (2015) 121–127.

A. Kulkarni, F. T. Ciacchi, S. Giddey, C. Munnings, S. P. S. Badwal, J. A. Kimpton, D. Fini, Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells. International Journal of Hydrogen Energy 2012;37:19092-19102.

C. Munnings, A. Kulkarni, S. Giddey, S. P. S. Badwal, Biomass to power conversion in a direct carbon fuel cell. International Journal of Hydrogen Energy 2014;39:12377-12385.

A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal, S. Bhattacharya, Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal. Electrochimica Acta 143 (2014) 278–290.

A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal, S. Bhattacharya, B. P. Ladewig, Direct carbon fuel cell operation on brown coal. Applied Energy 120 (2014) 56–64.

S. Giddey, A. Kulkarni, C. Munnings, S. P. S. Badwal, Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon. Energy 68 (2014) 538-547.

A. Kulkarni, S. Giddey, S. P. S. Badwal, G. Paul, Electrochemical performance of direct carbon fuel cells with titanate anodes, Electrochimica Acta 121 (2014) 34–43.

S. Giddey, A. Kulkarni, C. Munnings, S. P. S. Badwal, Composite anodes for improved performance of a direct carbon fuel cell. Journal of Power Sources 284 (2015) 122-129.

A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal, S. Bhattacharya, Direct Carbon Fuel Cell Operation on Brown Coal with a Ni-GDC-YSZ Anode. Electrochimica Acta 178 (2015) 721–731.

B. Yang, R. Ran, Y. Zhong, C. Su, M. O. Tad, Z. Shao, A Carbon–Air Battery for High Power Generation. Angew. Chem. Int. Ed. 2015, 54, 3722 –3725.

Y. Wu, C. Su, C. Zhang, R. Ran, Z. Shao, A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction. Electrochemistry Communications 2009;11:1265-1268.

S. Nürnberger, R. Bußar, B. Franke, U. Stimming, Effiziente und umweltfreundliche Nutzung von Kohlenstoff zur Elektrizitätserzeugung. Energie - Perspektiven für die Zukunft. Vorträge der Hamburger Tagung 2009:17-28.

S. Nürnberger, R. Bußar, P. Desclaux, B. Franke, M. Rzepka, U. Stimming, Direct carbon conversion in a SOFC-system with a non-porous anode. Energy Environ. Sci., 2010, 3, 150–153.

P. Desclaux, H. C. Schirmer, M. Woiton, E. Stern, M. Rzepka, Influence of the Carbon/Anode Interaction on Direct Carbon Conversion in a SOFC, Int J Electrochem Sci 2013;8:9125-9132.

J. Dong, Z. Cheng, S. Zha, M. Liu, Identification of nickel sulfides on Ni–YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy. Journal of Power Sources 2006;156:461–465.

M. Konsolakis, G. E. Marnellos, A. Al‐Musa, N. Kaklidis, I. Garagounis, V. Kyriakou, Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process. Chinese Journal of Catalysis 36 (2015) 509–516.

N. Kaklidis, V. Kyriakou, G. E. Marnellos, R. Strandbakke, A. Arenillas, J. A. Menéndez, Μ. Konsolakis, Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell. Solid State Ionics 288 (2016) 140–146.

X. Zhu, Y. Li, Z. Lu, Continuous conversion of biomass wastes in a La0.75Sr0.25Cr0.5Mn0.5O3–σ based carbon–air battery. International Journal of Hydrogen Energy 41 (2016) 5057-5062.

K. Xu, C. Chen, H. Liu, Y. Tian, X. Li, H. Yao, Effect of coal based pyrolysis gases on the performance of solid oxide direct carbon fuel cells. International Journal of Hydrogen Energy 2014;39:17845-17851.

P. Li, Y. Zhao, B. Yu, J. Li, Y. Li, Improve electrical conductivity of reduced La2Ni0.9Fe0.1O4+d as the anode of a solid oxide fuel cell by carbon deposition. International Journal of Hydrogen Energy 40 (2015) 9783-9789.

M. Lebreton, B. Delanoue, E. Baron, F. Ricoul, A. Kerihuel, A. Subrenat, O. Joubert, A. Le Gal La Salle, Effects of carbon monoxide, carbon dioxide, and methane on nickel-yttria-stabilized zirconia-based solid oxide fuel cells performance for direct coupling with a gasifier. International Journal of Hydrogen Energy 40 (2015) 10231-10241.

G. Cinti, K. Hemmes, Integration of direct carbon fuel cells with concentrated solar power. International Journal of Hydrogen Energy 36 (2011) 10198-10208.

T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, An Investigation of Anodes for Direct-Oxidation of Carbon in Solid Oxide Fuel Cell. Journal of Electrochemical Society 1995;142:2621-2624.

M. Ihara, K. Matsuda, H. Sato, C. Yokoyama, Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode. Solid State Ionics, 2004;175:51–54.

D. K. Niakolas, J. P. Ouweltjes, G. Rietveld, V. Dracopoulos, S. G. Neophytides, Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. International Journal of Hydrogen Energy 2010;35:7898-7904.

B. C. H. Steele, Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics 1996;86-88:1223-1234.

Y. Gong, K. Huang, Study of a renewable biomass fueled SOFC- The effect of catalysts. Int J Hydrogen Energy 2013; 38: 16518–16523.

N. Keisuke, T. Yoshihisa, Japanese Patent Application Publication No.: JP2010003568A.

S. S. C. Chuang, Carbon-based Fuel Cell - Final Report. Department of Chemical Engineering, The University of Akron 2006.

B. Habibzadeh, Understanding the co oxidation in solid oxide fuel cells using nickel patterned anode. Ph.D. Dissertation 2007, Faculty of Mechanical Engineering, University of Maryland.

J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Fueki, I. Koshiro, K. Hirano, Kinetics of the electrode reaction at the CO-CO2, porous Pt/stabilized zirconia interface. Solid State Ionics 1992;53–56:126-134.

G. O. Lauvstad, R. Tunold, S. Sunde, Electrochemical Oxidation of CO on Pt and Ni Point Electrodes in Contact with an Yttria-Stabilized Zirconia Electrolyte - I. Modeling of Steady-State and Impedance Behavior. Journal of The Electrochemical Society 2002;149:E497-E505.

D. Penchini, G. Cinti, G. Discepoli, E. Sisani, U. Desideri, Characterization of a 100 W SOFC stack fed by carbon monoxide rich fuels. International Journal of Hydrogen Energy 2013;38:525-531.

O. Costa-Nunes, R. J. Gorte, J. M. Vohs, Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas. Journal of Power Sources 2005;141:241–249.

T. M. Gür, L. Siewen, United States Patent Application Publication No.: US2008124613A1.

R. Mukundan, E. L. Brosha, F. Garzon, Sulfur tolerant anodes for SOFCs, Electrochem. Solid-State Lett. 7 (2004) A5-A7.

T. M. Gür, United States Patent Application Publication No.: US2008124265A1.

S. Wang, R. Liu, C. Zhao, J. Li, Republic of China Patent Application Publication No.: CN101540411A.

Y. Zhang, J. Liu, J. Yin, W. Yuan, J. Sui, Fabrication and Performance of Cone-Shaped Segmented-In-Series Solid Oxide Fuel Cells. Int. J. Appl. Ceram. Technol., 5 [6] 568–573 (2008).

P. Jacobson, M. C. Tucker, T. Z. Sholklapper, International Patent Application Publication No.: WO2011059468A1.

K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification hybrid power systems, Rynek Energii 2010;88(3):74-79

R. D. Brost, United States Patent Application Publication No.: US2012082910A1.


Refbacks

  • There are currently no refbacks.