Direct carbon, integrated gasification, and deposited carbon solid oxide fuel cells: a patent-based review of technological status

Szymon Obrębowski

Abstract


This review presents three directions in solid oxide fuel cell (SOFC) technology development involving solid-state carbon in
some stage of the fuel-to-electricity conversion process: direct carbon (DC-SOFC), integrated gasification (IG-SOFC) and
deposited carbon (rechargeable SOFC). Recent achievements of science and technology were studied in order to identify
the most widely developed concepts. In addition, the review contains a statistical approach to published patents and articles,
naming the people and institutions active in the field. Simultaneous development of all three technologies could bring
synergies and contributed to a major breakthrough in the efficiency of coal-fired power plants.


Keywords


Direct Carbon Fuel Cell; DC-SOFC; DCFC; IG-SOFC; Clean Coal Technologies

Full Text:

PDF

References


International Energy Agency, Key World Energy Statistics (2015).

T. Chmielniak, H. Łukowicz, Wysoko sprawne „zero-emisyjne” bloki

we˛glowe zintegrowane z wychwytem co2 ze spalin, Polityka energetyczna

(2012) 91–106.

H. Ghezel-Ayagh, Advances in sofc development at fuelcell energy,

in: 14th Annual SECA Workshop, Pittsburgh, PA, 2013.

Accessed on 3.09.2016. [link].

URL http://www.siemens.com/stories/cc/en/record-breaking

-power-plant/#chapter-solution

J. Kupecki, J. Jewulski, K. Motylinski, Parametric evaluation of a

micro-chp unit with solid oxide fuel cells integrated with oxygen transport

membranes, international journal of hydrogen energy 40 (35)

(2015) 11633–11640.

J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide

fuel cells fed by dme, international journal of hydrogen energy 40 (35)

(2015) 12009–12022.

J. Kupecki, Modeling platform for a micro-chp system with sofc operating

under load changes, in: Applied Mechanics and Materials, Vol.

, Trans Tech Publ, 2014, pp. 205–208.

J. Kupecki, J. Milewski, K. Badyda, J. Jewulski, Evaluation of sensitivity

of a micro-chp unit performance to sofc parameters, ECS Transactions

(1) (2013) 107–116.

J. Kupecki, M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Experimental

and numerical analysis of a serial connection of two sofc stacks in

a micro-chp system fed by biogas, International Journal of Hydrogen

Energy 42 (5) (2017) 3487–3497.

S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M. C. Romano,

Predicting the ultimate potential of natural gas sofc power

cycles with co2 capture–part a: Methodology and reference cases,

Journal of Power Sources 324 (2016) 598–614.

M. C. Williams, T. Horita, K. Yamaji, H. Yokokawa, An application of

solid particles in fuel cell technology, KONA Powder and Particle Journal

(2007) 153–161.

T. M. Gür, Critical review of carbon conversion in "carbon fuel cells",

Chemical reviews 113 (8) (2013) 6179–6206.

B. Heydorn, S. Crouch-Baker, Direct carbon conversion - progressions

of power, Institute of Physics and IOP Publishing, 2006.

S. Giddey, S. Badwal, A. Kulkarni, C. Munnings, A comprehensive

review of direct carbon fuel cell technology, Progress in Energy and

Combustion Science 38 (3) (2012) 360–399.

K. Hemmes, J. Cooper, J. Selman, Recent insights concerning dcfc

development: 1998–2012, international journal of hydrogen energy

(20) (2013) 8503–8513.

Y. Bai, Y. Liu, Y. Tang, Y. Xie, J. Liu, Direct carbon solid oxide fuel

cell—a potential high performance battery, international journal of hydrogen

energy 36 (15) (2011) 9189–9194.

T. Gur, Direct carbon fuel cell system utilizing solid carbonaceous fuels,

Final scientific/technical report, Direct Carbon Technologies, dOE

Award No. DE-NT0004395 (2010).

T. M. Gür, M. Homel, A. V. Virkar, High performance solid oxide fuel

cell operating on dry gasified coal, Journal of power sources 195 (4)

(2010) 1085–1090.

D. R. Lide, CRC Handbook of chemistry and physics, 87th Edition

(2006-2007).

R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals,

John Wiley & Sons, New York, 2006.

A. C. Chien, S. S. Chuang, Effect of gas flow rates and boudouard

reactions on the performance of ni/ysz anode supported solid oxide

fuel cells with solid carbon fuels, Journal of Power Sources 196 (10)

(2011) 4719–4723.

S. L. Jain, Y. Nabae, B. J. Lakeman, K. D. Pointon, J. T. Irvine, Solid

state electrochemistry of direct carbon/air fuel cells, Solid State Ionics

(27) (2008) 1417–1421.

P. Desclaux, S. Nürnberger, M. Rzepka, U. Stimming, Investigation

of direct carbon conversion at the surface of a ysz electrolyte in a

sofc, international journal of hydrogen energy 36 (16) (2011) 10278–

R. Wolk, Direct carbon fuel cells: Assessment of their potential

as solid carbon fuel based power generation systems, Report to

the CMS Review Committee UCRL-SR-203880, Lawrence Livermore

National Laboratory (LLNL), Livermore, CA (2004).

J. F. Cooper, Direct conversion of coal derived carbon in fuel cells, in:

Recent trends in fuel cell science and technology, Springer, 2007, pp.

–266.

M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. United States

Patent No.: US8309272B2 (2012).

M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide cell. Japanese

Patent No.: JP5284596B2 (2013).

E. Masahiro, M. Ihara, Electric generator. Japanese Patent No.:

JP5344565B2 (2013).

M. Ihara, K. Naganari, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki,

Solid oxide cell for generating electricity using the power generation

method and the generation method of the solid oxide cell.

Japanese Patent No.: JP5489327B2 (2014).

M. Ihara, O. Kazunori, F. Yasuhiro, M. Takeshi, K. Hiroyuki, Power

generation method of the solid oxide fuel cell. Japanese Patent No.:

JP5495377B2 (2014).

M. Ihara, S. Hasegawa, K. Yamahara, Solid oxide fuel cell with solid

carbon deposited on the anode. Canadian Patent No.: CA2647249C

(2015).

J. P. Kim, C. H. Jeon, J. H. Song, G. B. Kim, Y. G. Kim,

Angle-adjustable coal fuel cell unit. Republic of Korea Patent No.:

KR101010535B1 (2011).

C. H. Jeon, J. P. Kim, Y. J. Chang, S. K. Lee, W. S. Son, S. Y. Kim,

S. D. Lee, S. K. Lee, Solid oxide fuel cell system fueled by natural

gas. Republic of Korea Patent No.: KR101223645B1 (2013).

C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped

with carbon monoxide generator using ultraclean coal or graphite. Republic

of Korea Patent No.: KR101477195B1 (2014).

C. H. Jeon, J. P. Kim, S. M. Kim, Solid oxide fuel cell system equipped

with carbon monoxide generator using ultraclean coal or graphite.

United States Patent No.: US9257713B2 (2016).

J.-P. Kim, H. Lim, C.-H. Jeon, Y.-J. Chang, K.-N. Koh, S.-M. Choi,

J.-H. Song, Performance evaluation of tubular fuel cells fuelled by

pulverized graphite, Journal of Power Sources 195 (22) (2010) 7568–

J.-P. Kim, H.-K. Choi, Y.-J. Chang, C.-H. Jeon, Feasibility of using

ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell, international

journal of hydrogen energy 37 (15) (2012) 11401–11408.

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Flat plate type bubbling

bed solid oxide direct carbon fuel cell stack. Republic of China Utility

Model No.: CN202004100U (2011).

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Fuel cell stack. Republic of

China Utility Model No.: CN202034437U (2011).

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Solid oxide direct carbon

fuel cell stack of tablet bubbling bed. Republic of China Patent No.:

CN102170009B (2012).

S. Xu, C. Li, J. Cheng, Y. Xu, B. Wang, Compact flat-plate solid

oxide direct carbon fuel cell stack. Republic of China Patent No.:

CN102185149B (2013).

X. Yu, Y. Shi, H. Wang, N. Cai, C. Li, R. I. Tomov, J. Hanna, B. A.

Glowacki, A. F. Ghoniem, Experimental characterization and elementary

reaction modeling of solid oxide electrolyte direct carbon fuel cell,

Journal of Power Sources 243 (2013) 159–171.

T. M. Gür, R. Huggins, Direct electrochemical conversion of carbon to

electrical energy in a high temperature fuel cell. United States Patent

No.: US5376469A (1994).

T. M. Gür, High temperature direct coal fuel cell. United States Patent

No.: US7799472B2 (2010).

T. M. Gür, R. E. Mitchell, A. C. Lee, S. Li, Integrated dry gasification

fuel cell system for conversion of solid carbonaceous fuels. United

States Patent No.: US8563183B2 (2013).

A. C. Lee, S. Li, R. E. Mitchell, T. M. Gür, Conversion of solid carbonaceous

fuels in a fluidized bed fuel cell, Electrochemical and Solid-

State Letters 11 (2) (2008) B20–B23.

S. Li, A. C. Lee, R. E. Mitchell, T. M. Gür, Direct carbon conversion in

a helium fluidized bed fuel cell, Solid State Ionics 179 (27-32) (2008)

–1552.

A. C. Lee, R. E. Mitchell, T. M. Gür, Thermodynamic analysis of

gasification-driven direct carbon fuel cells, Journal of Power Sources

(2) (2009) 774–785.

T. M. Gür, Mechanistic modes for solid carbon conversion in high temperature

fuel cells, Journal of The Electrochemical Society 157 (5)

(2010) B751–B759.

M. Homel, T. M. Gür, J. H. Koh, A. V. Virkar, Carbon monoxide-fueled

solid oxide fuel cell, Journal of Power Sources 195 (19) (2010) 6367–

J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Sposób i układ elektrochemicznej

generacji energii elektrycznej w stosach stałotlenkowych

zasilanych zwłaszcza paliwem we˛glowym [The method and the system

of electrochemical generation of electric energy in solid oxide

stacks, fueled in particular with carbonaceous fuel]. Republic of

Poland Patent No.: PL405205B (2013).

J. Jewulski, M. Skrzypkiewicz, S. Obrebowski, Stos we˛glowych ogniw

paliwowych [Carbon fuel cell stack]. Republic of Poland Patent No.:

PL405206B (2013).

M. Dudek, P. Tomczyk, K. Juda, R. Tomov, B. Glowacki, S. Batty,

P. Risby, R. Socha, Comparison of the performances of dcfc fuelled

with the product of methane rf plasma reforming and carbon black,

Int. J. Electrochem. Sci 7 (2012) 6704–6721.

M. Dudek, R. Tomov, C. Wang, B. Glowacki, P. Tomczyk, R. Socha,

M. Mosiałek, Feasibility of direct carbon solid oxide fuels cell (dcsofc)

fabrication by inkjet printing technology, Electrochimica Acta

(2013) 412–418.

M. Dudek, P. Tomczyk, R. Socha, M. Skrzypkiewicz, J. Jewulski,

Biomass fuels for direct carbon fuel cell with solid oxide electrolyte,

Int. J. Electrochem. Sci 8 (2013) 3229–3253.

J. Jewulski, M. Skrzypkiewicz, Direct carbon fuel cells based on solid

oxide electrolyte technology, Przegla˛d elektrotechniczny 89 (2013)

–270.

J. Jewulski, M. Skrzypkiewicz, M. Struzik, I. Lubarska-Radziejewska,

Lignite as a fuel for direct carbon fuel cell system, international journal

of hydrogen energy 39 (36) (2014) 21778–21785.

R. Antunes, M. Skrzypkiewicz, Chronoamperometric investigations

of electro-oxidation of lignite in direct carbon bed solid oxide fuel cell,

International Journal of Hydrogen Energy 40 (12) (2015) 4357–4369.

M. Skrzypkiewicz, I. Lubarska-Radziejewska, J. Jewulski, The effect

of fe2o3 catalyst on direct carbon fuel cell performance, International

Journal of Hydrogen Energy 40 (38) (2015) 13090–13098.

M. Dudek, M. Skrzypkiewicz, N. Moskała, P. Grzywacz, M. Sitarz,

I. Lubarska-Radziejewska, The impact of physicochemical properties

of coal on direct carbon solid oxide fuel cells, International Journal of

Hydrogen Energy 41 (41) (2016) 18872–18883.

M. Skrzypkiewicz, M. Dudek, Carbon as a fuel for efficient electricity

generation in carbon solid oxide fuel cells, in: E3S Web of Conferences,

Vol. 10, EDP Sciences, 2016, p. 00116.

C. N. Li, Buried tube type bubbling bed direct carbon fuel cell. Republic

of China Patent No.: CN100440597C (2008).

N. Cai, C. Li, Y. Shi, Direct carbon fuel cell reaction device. Republic

of China Patent No.: CN100595959C (2010).

Y. Shi, N. Cai, H. Wang, Fluid bed electrode direct carbon fuel

cell device. Republic of China Patent Application Publication No.:

CN102324539A (2012).

X.-Y. Zhao, Q. Yao, S.-Q. Li, N.-S. Cai, Studies on the carbon reactions

in the anode of deposited carbon fuel cells, Journal of Power

Sources 185 (1) (2008) 104–111.

C. Li, Y. Shi, N. Cai, Performance improvement of direct carbon fuel

cell by introducing catalytic gasification process, Journal of Power

Sources 195 (15) (2010) 4660–4666.

C. Li, Y. Shi, N. Cai, Effect of contact type between anode and carbonaceous

fuels on direct carbon fuel cell reaction characteristics,

Journal of Power Sources 196 (10) (2011) 4588–4593.

C. Li, Y. Shi, N. Cai, Mechanism for carbon direct electrochemical

reactions in a solid oxide electrolyte direct carbon fuel cell, Journal of

Power Sources 196 (2) (2011) 754–763.

J. H. Yoo, H. K. Choi, S. D. Kim, S. H. Lee, Y. J. Rhim, Solid oxide fuel

cells fueled by gasificating of solid carbon. Republic of Korea Patent

No.: KR101177648B1 (2012).

T. H. Lim, R. H. Song, S. J. Park, S. B. Lee, J. W. Lee, B. J.

Jung, N. Y. Lee, Coal pretreatment method for direct carbon fuel

cell and direct carbon fuel cell thereof. Republic of Korea Patent No.:

KR101451904B1 (2014).

T.-H. Lim, S.-K. Kim, U.-J. Yun, J.-W. Lee, S.-B. Lee, S.-J. Park, R.-H.

Song, Performance characteristic of a tubular carbon-based fuel cell

short stack coupled with a dry carbon gasifier, international journal of

hydrogen energy 39 (23) (2014) 12395–12401.

H. Ju, J. Eom, J. K. Lee, H. Choi, T.-H. Lim, R.-H. Song, J. Lee,

Durable power performance of a direct ash-free coal fuel cell, Electrochimica

Acta 115 (2014) 511–517.

J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrode assembly,

direct carbon fuel cell including the same, and method of preparing

the same. United States Patent No.: US9406946B2 (2016).

J. Lee, H. K. Ju, J. Y. Eom, J. K. Lee, Membrane-electrolyte assembly,

direct carbon fuel cell comprising the same, and the preparation

thereof. Republic of Korea Patent No.: KR101647294B1 (2016).

H. Jang, J. D. Ocon, S. Lee, J. K. Lee, J. Lee, Direct power generation

from waste coffee grounds in a biomass fuel cell, Journal of Power

Sources 296 (2015) 433–439.

S. Chuang, Carbon-based fuel cell.United Stated Patent No.:

US8940454B2 (2015).

S. Chuang, Fuel cell of direct electrochemical oxidation (versions)

and generation method of electric energy from solid-phase organic

fuel (versions). Russian Federation Patent No.: RU2420833C2

(2011).

A. J. Zillmer, J. P. Carroll, Fuel cell instrumentation system. United

States Patent No.: US7826054B2 (2010).

J. Liu, Y. Liu, Y. Tang, Y. Bai, Direct carbon solid oxide fuel cell power

system. Republic of China Patent No.: CN102130354B (2013).

Y. Tang, J. Liu, Effect of anode and boudouard reaction catalysts on

the performance of direct carbon solid oxide fuel cells, international

journal of hydrogen energy 35 (20) (2010) 11188–11193.

Y. Bai, C. Wang, J. Ding, C. Jin, J. Liu, Direct operation of coneshaped

anode-supported segmented-in-series solid oxide fuel cell

stack with methane, Journal of Power Sources 195 (12) (2010) 3882–

Y. Xie, Y. Tang, J. Liu, A verification of the reaction mechanism of

direct carbon solid oxide fuel cells, Journal of Solid State Electrochemistry

(1) (2013) 121–127.

L. Zhang, J. Xiao, Y. Xie, Y. Tang, J. Liu, M. Liu, Behavior of strontiumand

magnesium-doped gallate electrolyte in direct carbon solid oxide

fuel cells, Journal of Alloys and Compounds 608 (2014) 272–277.

Y. Xie, W. Cai, J. Xiao, Y. Tang, J. Liu, M. Liu, Electrochemical gas–

electricity cogeneration through direct carbon solid oxide fuel cells,

Journal of Power Sources 277 (2015) 1–8.

W. Cai, Q. Zhou, Y. Xie, J. Liu, A facile method of preparing fe-loaded

activated carbon fuel for direct carbon solid oxide fuel cells, Fuel 159

(2015) 887–893.

H. Lyu, W. Tian, W. Wang, Y. Jiao, S. Li, Split type direct carbon solid

oxide fuel cell device. Republic of China Patent No.: CN203871426U

(2014).

Y. Jiao, W. Tian, H. Chen, H. Shi, B. Yang, C. Li, Z. Shao, Z. Zhu, S.-D.

Li, In situ catalyzed boudouard reaction of coal char for solid oxidebased

carbon fuel cells with improved performance, Applied Energy

(2015) 200–208.

Y. Jiao, J. Zhao, W. An, L. Zhang, Y. Sha, G. Yang, Z. Shao, Z. Zhu,

S.-D. Li, Structurally modified coal char as a fuel for solid oxidebased

carbon fuel cells with improved performance, Journal of Power

Sources 288 (2015) 106–114.

Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S.-D. Li,

Controlled deposition and utilization of carbon on ni-ysz anodes of

sofcs operating on dry methane, Energy 113 (2016) 432–443.

S. Wang, Q. Gao, L. Shao, C. Zhang, C. Yuan, X. Liu, T. Wei, C. Ji,

Direct carbon solid oxide fuel cell stack. Republic of China Patent No.:

CN103078128B (2015).

R. Liu, C. Zhao, J. Li, F. Zeng, S. Wang, T. Wen, Z. Wen, A novel

direct carbon fuel cell by approach of tubular solid oxide fuel cells,

Journal of Power Sources 195 (2) (2010) 480–482.

J. Zhou, X. Ye, L. Shao, X. Zhang, J. Qian, S. Wang, A promising

direct carbon fuel cell based on the cathode-supported tubular solid

oxide fuel cell technology, Electrochimica Acta 74 (2012) 267–270.

T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Solid oxide

fuel cell and a carbon direct-oxidizing-type electrode for the fuel cell.

United States Patent No.: US6183896B1 (2001).

J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus

for dcfc and system including the same. Republic of Korea

Patent No.: KR101350456B1 (2014).

J. Y. Hwang, K. T. Kang, H. S. Kang, S. H. Lee, Fuel supplying apparatus

and system for direct carbon fuel cell. United States Patent No.:

US9799900B2 (2017).

M. Ihara, Y. Chiaki, The method of operating a solid oxide fuel cell

and solid oxide fuel cell. Japanese Patent No.: JP4504642B2 (2010).

S. G. Kim, S. C. Hwang, S. T. Kuk, C. M. Yang, Direct carbon fuel cell

stack. Republic of Korea Patent No.: KR101351324B1 (2014).

B. P. Ennis, Carbon capture with power generation. United States

Patent No.: US8850826B2 (2014).

Q. Fan, R. Liu, Direct carbon fueled solid oxide fuel cell or high temperature

battery. United States Patent No.: US7745026B2 (2010).

R. Chandran, Gasifier having integrated fuel cell power generation

system. United States Patent No.: US8968433B2 (2015).

M. Dudek, P. Tomczyk, Composite fuel for direct carbon fuel cell,

Catalysis Today 176 (1) (2011) 388–392.

M. Dudek, Anode materials with increased resistance to the action

of sulfur compounds for the solid oxide fuel cells with direct oxidation

of carbon.Republic of Poland Patent Application No.: PL410775A1

(2016).

M. Dudek, P. Tomczyk, R. Socha, M. Hamaguchi, Use of ash-free

“hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide

electrolyte, International journal of hydrogen energy 39 (23) (2014)

–12394.

M. Dudek, On the utilization of coal samples in direct carbon solid

oxide fuel cell technology, Solid State Ionics 271 (2015) 121–127.

A. Kulkarni, F. Ciacchi, S. Giddey, C. Munnings, S. Badwal, J. Kimpton,

D. Fini, Mixed ionic electronic conducting perovskite anode for

direct carbon fuel cells, International Journal of Hydrogen Energy

(24) (2012) 19092–19102.

C. Munnings, A. Kulkarni, S. Giddey, S. Badwal, Biomass to power

conversion in a direct carbon fuel cell, International Journal of Hydrogen

Energy 39 (23) (2014) 12377–12385.

A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya,

Degradation mechanism in a direct carbon fuel cell operated with

demineralised brown coal, Electrochimica Acta 143 (2014) 278–290.

A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya,

B. P. Ladewig, Direct carbon fuel cell operation on brown coal, Applied

Energy 120 (2014) 56–64.

S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Performance evaluation

of a tubular direct carbon fuel cell operating in a packed bed of

carbon, Energy 68 (2014) 538–547.

A. Kulkarni, S. Giddey, S. Badwal, G. Paul, Electrochemical performance

of direct carbon fuel cells with titanate anodes, Electrochimica

Acta 121 (2014) 34–43.

S. Giddey, A. Kulkarni, C. Munnings, S. Badwal, Composite anodes

for improved performance of a direct carbon fuel cell, Journal of

Power Sources 284 (2015) 122–129.

A. C. Rady, S. Giddey, A. Kulkarni, S. P. Badwal, S. Bhattacharya, Direct

carbon fuel cell operation on brown coal with a ni-gdc-ysz anode,

Electrochimica Acta 178 (2015) 721–731.

B. Yang, R. Ran, Y. Zhong, C. Su, M. O. Tadé, Z. Shao, A carbon–air

battery for high power generation, Angewandte Chemie International

Edition 54 (12) (2015) 3722–3725.

Y. Wu, C. Su, C. Zhang, R. Ran, Z. Shao, A new carbon fuel cell

with high power output by integrating with in situ catalytic reverse

boudouard reaction, Electrochemistry Communications 11 (6) (2009)

–1268.

S. Nürnberger, R. Bußar, B. Franke, U. Stimming, Effiziente und

umweltfreundliche nutzung von kohlenstoff zur elektrizitätserzeugung

(vorgetragen von u. stimming), in: Energie - Perspektiven für die

Zukunft. Vorträge der Hamburger Tagung, 2009, pp. 17–28.

S. Nürnberger, R. Bußar, P. Desclaux, B. Franke, M. Rzepka, U. Stimming,

Direct carbon conversion in a sofc-system with a non-porous

anode, Energy & Environmental Science 3 (1) (2010) 150–153.

P. Desclaux, H. Schirmer, M. Woiton, E. Stern, M. Rzepka, Influence

of the carbon/anode interaction on direct carbon conversion in a sofc,

Int J Electrochem Sci 8 (2013) 9125–9132.

J. Dong, Z. Cheng, S. Zha, M. Liu, Identification of nickel sulfides on

ni–ysz cermet exposed to h2 fuel containing h2s using raman spectroscopy,

Journal of Power Sources 156 (2) (2006) 461–465.

M. Konsolakis, G. Marnellos, A. Al-Musa, N. Kaklidis, I. Garagounis,

V. Kyriakou, Carbon to electricity in a solid oxide fuel cell combined

with an internal catalytic gasification process, Chinese Journal

of Catalysis 36 (4) (2015) 509–516.

N. Kaklidis, V. Kyriakou, G. Marnellos, R. Strandbakke, A. Arenillas,

J. Menéndez, M. Konsolakis, Effect of fuel thermal pretreament on

the electrochemical performance of a direct lignite coal fuel cell, Solid

State Ionics 288 (2016) 140–146.

X. Zhu, Y. Li, Z. Lü, Continuous conversion of biomass wastes in a

la0. 75sr0. 25cr0. 5mn0. 5o3– based carbon–air battery, International

Journal of Hydrogen Energy 41 (9) (2016) 5057–5062.

K. Xu, C. Chen, H. Liu, Y. Tian, X. Li, H. Yao, Effect of coal based

pyrolysis gases on the performance of solid oxide direct carbon

fuel cells, International Journal of Hydrogen Energy 39 (31) (2014)

–17851.

P. Li, Y. Zhao, B. Yu, J. Li, Y. Li, Improve electrical conductivity of

reduced la2ni0. 9fe0. 1o4+ as the anode of a solid oxide fuel cell by

carbon deposition, International Journal of Hydrogen Energy 40 (31)

(2015) 9783–9789.

M. Lebreton, B. Delanoue, E. Baron, F. Ricoul, A. Kerihuel, A. Subrenat,

O. Joubert, A. L. G. La Salle, Effects of carbon monoxide, carbon

dioxide, and methane on nickel/yttria-stabilized zirconia-based solid

oxide fuel cells performance for direct coupling with a gasifier, International

Journal of Hydrogen Energy 40 (32) (2015) 10231–10241.

G. Cinti, K. Hemmes, Integration of direct carbon fuel cells with

concentrated solar power, international journal of hydrogen energy

(16) (2011) 10198–10208.

T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, An investigation

of anodes for direct-oxidation of carbon in solid oxide fuel cells,

Journal of the Electrochemical Society 142 (8) (1995) 2621–2624.

M. Ihara, K. Matsuda, H. Sato, C. Yokoyama, Solid state fuel storage

and utilization through reversible carbon deposition on an sofc anode,

Solid State Ionics 175 (1-4) (2004) 51–54.

D. Niakolas, J. Ouweltjes, G. Rietveld, V. Dracopoulos, S. Neophytides,

Au-doped ni/gdc as a new anode for sofcs operating under

rich ch4 internal steam reforming, international journal of hydrogen

energy 35 (15) (2010) 7898–7904.

B. C. Steele, Survey of materials selection for ceramic fuel cells ii.

cathodes and anodes, Solid State Ionics 86 (1996) 1223–1234.

Y. Gong, K. Huang, Study of a renewable biomass fueled sofc: the

effect of catalysts, International Journal of Hydrogen Energy 38 (36)

(2013) 16518–16523.

N. Keisuke, T. Yoshihisa, Rechargeable direct carbon fuel cell.

Japanese Patent Application Publication No.: JP2010003568A

(2010).

S. Chuang, Carbon-based fuel cell-final report, Tech. rep., Department

of Chemical Engineering, The University of Akron (2006).

B. Habibzadeh, Understanding carbon monoxide oxidation in solid

oxide fuel cells using nickel patterned anode, Ph.D. thesis, University

of Maryland, College Park (2007).

J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Fueki, I. Koshiro,

K. Hirano, Kinetics of the electrode reaction at the co-co2, porous

pt/stabilized zirconia interface, Solid State Ionics 53 (1992) 126–134.

G. O. Lauvstad, R. Tunold, S. Sunde, Electrochemical oxidation of co

on pt and ni point electrodes in contact with an yttria-stabilized zirconia

electrolyte i. modeling of steady-state and impedance behavior,

Journal of The Electrochemical Society 149 (12) (2002) E497–E505.

D. Penchini, G. Cinti, G. Discepoli, E. Sisani, U. Desideri, Characterization

of a 100 w sofc stack fed by carbon monoxide rich fuels,

international journal of hydrogen energy 38 (1) (2013) 525–531.

O. Costa-Nunes, R. J. Gorte, J. M. Vohs, Comparison of the performance

of cu–ceo2–ysz and ni–ysz composite sofc anodes with h2,

co, and syngas, Journal of power sources 141 (2) (2005) 241–249.

T. M. Gür, L. Siewen, Multi-functional cermet anodes for high temperature

fuel cells. United States Patent Application Publication No.:

US2008124613A1 (2008).

R. Mukundan, E. L. Brosha, F. H. Garzon, Sulfur tolerant anodes for

sofcs, Electrochemical and Solid-State Letters 7 (1) (2004) A5–A7.

T. M. Gür, Catalytic oxide anodes for high temperature fuel cells.

United States Patent Application Publication No.: US2008124265A1

(2008).

S. Wang, R. Liu, C. Zhao, J. Li, Solid electrolyte direct carbon

fuel cell. Republic of China Patent Application Publication No.:

CN101540411A (2009).

Y. Zhang, J. Liu, J. Yin, W. Yuan, J. Sui, Fabrication and performance

of cone-shaped segmented-in-series solid oxide fuel cells, International

Journal of Applied Ceramic Technology 5 (6) (2008) 568–573.

P. Jacobson, M. C. Tucker, T. Z. Sholklapper, Fuel cell system. International

Patent Application Publication No.: WO2011059468A1

(2011).

K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification

hybrid power systems, Rynek Energii 88 (3) (2010) 74–79.

R. D. Brost, Carbon-based fuel cell system. United States Patent Application

Publication No.: US2012082910A1 (2012).

— 160


Refbacks

  • There are currently no refbacks.