Compressed Air Energy Storage Systems

Jaroslaw Milewski, Krzysztof Badyda, Łukasz Szabłowski

Abstract


Compressed Air Energy Storage (CAES) technology and electricity generation by this system are described in this paper.
General performances and possible system efficiency definitions of those kinds of systems are indicated. Hybrid systems
which consist of CAES and other Renewable Technologies—RT—(e.g. wind turbines) are presented. A possible location
for CAES–RT in Poland is indicated. A dynamic mathematical model of CAES is presented; using this model the results for
compressing and expanding operating modes are obtained.

Keywords


Keywords: Compressed Air Energy System

Full Text:

PDF

References


J. Stempien, Q. Liu, M. Ni, Q. Sun, S. Chan, Physical principles for

the calculation of equilibrium potential for co-electrolysis of steam and

carbon dioxide in a solid oxide electrolyzer cell (soec), Electrochimica

Acta 147 (2014) 490–497.

D. Bakalis, A. Stamatis, Improving hybrid sofc-gt systems performance

through turbomachinery design, International Journal of Energy Research

(15) 1975–1986.

G. De Lorenzo, P. Fragiacomo, Energy analysis of an sofc system fed

by syngas, Energy Conversion and Management 93 (2015) 175–186.

J. Ding, X. Li, J. Cao, L. Sheng, L. Yin, X. Xu, New sensor for gases

dissolved in transformer oil based on solid oxide fuel cell, Sensors and

Actuators, B: Chemical 202 (2014) 232–239.

M. Ferrari, Advanced control approach for hybrid systems based on

solid oxide fuel cells, Applied Energy 145 (2015) 364–373.

E. Hosseinzadeh, M. Rokni, M. Jabbari, H. Mortensen, Numerical

analysis of transport phenomena for designing of ejector in pem forklift

system, International Journal of Hydrogen Energy 39 (12) (2014)

–6674.

J. Kupecki, J. Jewulski, Parametric evaluation of a micro-chp unit with

solid oxide fuel cells integrated with oxygen transport membranes,

Vol. 3, 2014, pp. 1841–1847.

M. Law, V.-C. Lee, C. Tay, Dynamic behaviors of a molten carbonate

fuel cell under a sudden shut-down scenario: The effects on temperature

gradients, Applied Thermal Engineering 82 (2015) 98–109.

A.-G. Liu, Y.-W.Weng, L. Chen, H.-A. Ma, Performance analysis of fuel

cell for pressured mcfc/mgt hybrid system, Shanghai Jiaotong Daxue

Xuebao/Journal of Shanghai Jiaotong University 48 (9) (2014) 1239–

P. Pianko-Oprych, E. Kasilova, Z. Jaworski, Quantification of the radiative

and convective heat transfer processes and their effect on msofc

by cfd modelling, Polish Journal of Chemical Technology 16 (2) (2014)

–55.

J. Qian, J. Hou, Z. Tao, W. Liu, Fabrication of (sm, ce)o2- interlayer

for yttria-stabilized zirconia-based intermediate temperature solid oxide

fuel cells, Journal of Alloys and Compounds 631 (2015) 255–260.

P. Polverino, C. Pianese, M. Sorrentino, D. Marra, Model-based development

of a fault signature matrix to improve solid oxide fuel cell

systems on-site diagnosis, Journal of Power Sources 280 (2015) 320–

K. Raj, S. Chan, Transient analysis of carbon monoxide transport phenomena

and adsorption kinetics in ht-pemfc during dynamic current

extraction, Electrochimica Acta 165 (2015) 288–300.

M. Ramandi, I. Dincer, P. Berg, A transient analysis of threedimensional

heat and mass transfer in a molten carbonate fuel cell

at start-up, International Journal of Hydrogen Energy 39 (15) (2014)

–8047.

I. Rexed, M. della Pietra, S. McPhail, G. Lindbergh, C. Lagergren,

Molten carbonate fuel cells for co2 separation and segregation by

retrofitting existing plants - an analysis of feasible operating windows

and first experimental findings, International Journal of Greenhouse

Gas Control 35 (2015) 120–130.

R. Roshandel, M. Astaneh, F. Golzar, Multi-objective optimization of

molten carbonate fuel cell system for reducing co2 emiss[17] J.-H. Wee, Carbon dioxide emission reduction using molten carbonate

fuel cell systems, Renewable and Sustainable Energy Reviews 32

(2014) 178–191.

H. Xu, Z. Dang, B.-F. Bai, Electrochemical performance study of solid

oxide fuel cell using lattice boltzmann method, Energy 67 (2014) 575–

X. Zhang, H. Liu, M. Ni, J. Chen, Performance evaluation and parametric

optimum design of a syngas molten carbonate fuel cell and gas

turbine hybrid system, Renewable Energy 80 (2015) 407–414.

S. K. Khaitan, M. Raju, Dynamics of hydrogen powered caes based

gas turbine plant using sodium alanate storage system, international

journal of hydrogen energy 37 (24) (2012) 18904–18914.

A. Cavallo, Controllable and affordable utility-scale electricity from intermittent

wind resources and compressed air energy storage (caes),

Energy 32 (2) (2007) 120–127.

Y. S. Najjar, M. S. Zaamout, Performance analysis of compressed air

energy storage (caes) plant for dry regions, Energy conversion and

management 39 (15) (1998) 1503–1511.

G. Grazzini, A. Milazzo, Thermodynamic analysis of caes/tes systems

for renewable energy plants, Renewable Energy 33 (9) (2008) 1998–

G. Salgi, H. Lund, System behaviour of compressed-air energystorage

in denmark with a high penetration of renewable energy

sources, Applied Energy 85 (4) (2008) 182–189.

P. Denholm, R. Sioshansi, The value of compressed air energy storage

with wind in transmission-constrained electric power systems, Energy

Policy 37 (8) (2009) 3149–3158.

H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, J. Perron, Study and

design of a hybrid wind–diesel-compressed air energy storage system

for remote areas, Applied Energy 87 (5) (2010) 1749–1762.

Y. Kim, D. Favrat, Energy and exergy analysis of a micro-compressed

air energy storage and air cycle heating and cooling system, Energy

(1) (2010) 213–220.

N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop, Simulation and analysis

of different adiabatic compressed air energy storage plant configurations,

Applied Energy 93 (2012) 541–548.

N. M. Jubeh, Y. S. Najjar, Power augmentation with caes (compressed

air energy storage) by air injection or supercharging makes environment

greener, Energy 38 (1) (2012) 228–235.

Y. Li, X. Wang, D. Li, Y. Ding, A trigeneration system based on compressed

air and thermal energy storage, Applied Energy 99 (2012)

–323.

V. Kokaew, M. Moshrefi-Torbati, S. M. Sharkh, Maximum efficiency or

power tracking of stand-alone small scale compressed air energy storage

system, Energy Procedia 42 (2013) 387–396.

T. Brown, V. Atluri, J. Schmiedeler, A low-cost hybrid drivetrain concept

based on compressed air energy storage, Applied Energy 134 (2014)

–489.

E. Jannelli, M. Minutillo, A. L. Lavadera, G. Falcucci, A small-scale

caes (compressed air energy storage) system for stand-alone renewable

energy power plant for a radio base station: A sizing-design

methodology, Energy 78 (2014) 313–322.

T. Basbous, R. Younes, A. Ilinca, J. Perron, Optimal management of

compressed air energy storage in a hybrid wind-pneumatic-diesel system

for remote area’s power generation, Energy 84 (2015) 267–278.

B. C. Cheung, Design of system architecture and thermal management

components for an underwater energy storage facility, Master’s thesis,

University of Windsor (2014).

B. C. Cheung, R. Carriveau, D. S. Ting, Multi-objective optimization of

an underwater compressed air energy storage system using genetic

algorithm, Energy 74 (2014) 396–404.

B. C. Cheung, R. Carriveau, D. S.-K. Ting, Parameters affecting scalable

underwater compressed air energy storage, Applied Energy 134

(2014) 239–247.

A. J. Pimm, S. D. Garvey, M. de Jong, Design and testing of energy

bags for underwater compressed air energy storage, Energy 66 (2014)

–508.

A. Vasel-Be-Hagh, R. Carriveau, D. S.-K. Ting, Underwater compressed

air energy storage improved through vortex hydro energy,

Sustainable Energy Technologies and Assessments 7 (2014) 1–5.

B. Kantharaj, S. Garvey, A. Pimm, Thermodynamic analysis of a hybrid

energy storage system based on compressed air and liquid air,

Sustainable Energy Technologies and Assessments.

K. Badyda, J. Milewski, Magazynowanie energii z wykorzystaniem

układów caes, in: Monografia "Współczesne problemy energetyki

gazowej i gazownictw" wydana z okazji IV Konferencji Energetyka

Gazowa). Wydawnictwo Instytutu Techniki Cieplnej Politechniki

S´ lqskiej, Gliwice, 2009, pp. 371–388.

F. Crotogino, K.-U. Mohmeyer, R. Scharf, Huntorf caes: More than 20

years of successful operation, Orlando, Florida, USA.

H.-M. Kim, J. Rutqvist, D.-W. Ryu, B.-H. Choi, C. Sunwoo, W.-K. Song,

Exploring the concept of compressed air energy storage (caes) in lined

rock caverns at shallow depth: a modeling study of air tightness and

energy balance, Applied Energy 92 (2012) 653–667.

T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a

supercritical coal-fired chp plant integrated with an absorption carbon

capture installation, Energy 64 (2014) 513–523.

Y. Zhang, K. Yang, X. Li, J. Xu, The thermodynamic effect of air storage

chamber model on advanced adiabatic compressed air energy storage

system, Renewable Energy 57 (2013) 469–478.

N. M. Jubeh, Y. S. Najjar, Green solution for power generation by adoption

of adiabatic caes system, Applied Thermal Engineering 44 (2012)

–89.

A. Bagdanavicius, N. Jenkins, Exergy and exergoeconomic analysis

of a compressed air energy storage combined with a district energy

system, Energy Conversion and Management 77 (2014) 432–440.

A. Kere, N. Sadiki, X. Py, V. Goetz, Applicability of thermal energy

storage recycled ceramics to high temperature and compressed air

operating conditions, Energy Conversion and Management 88 (2014)

–119.

H. Safaei, D. W. Keith, R. J. Hugo, Compressed air energy storage

(caes) with compressors distributed at heat loads to enable waste heat

utilization, Applied Energy 103 (2013) 165–179.

B. Haug, „the iowa stored energy plant", DOE Energy Storage Systems

Program Annular Peer Reviev (2004) 10–11.

F. CROTOGINO, Druckluftspeicher-gasturbinen-kraftwerke/geplanter

einsatz beim ausgleich fluktuierender windenergie-produktion und aktuellem

strombedarf, in: Kasseler Symposium Energie-Systemtechnik,

, pp. 26–38.

V. Marano, G. Rizzo, F. A. Tiano, Application of dynamic programming

to the optimal management of a hybrid power plant with wind turbines,

photovoltaic panels and compressed air energy storage, Applied Energy

(2012) 849–859.

Polish electric power statistics 2012, 2013 (2013, 2014).

J. Cywi´ nski, Study on the impact of wind generation on the KSE, Master’s

thesis, Warsaw University of Technology (2014).

R. Wiser, M. Bolinger, Wind technologies market report. us department

of energy, energy efficiency and renewable energy (2010).

L. Fried, Global wind statistics 2015, Report, Global Wind Energy

Council (GWEC), Brussels, Belgium.

K. Badyda, J. Lewandowski, Uwarunkowania wzrostu zapotrzebowania

na gaz dla energetyki i ciepłownictwa, Rynek Energii (2009) 2–7.

A. Gajewski, A.; Wójcicki, Mie˛dzynarodowy projekt CASTOR a problematyka

sekwestracji, czyli ujmowania i magazynowania CO2 w

Polsce, Przegla˛d Geologiczny 54 (4) (2005) 270–272.

D. T. Bradshaw, Pumped hydroelectric storage (phs) and compressed

air energy storage (caes), in: Power Engineering Society Summer

Meeting, 2000. IEEE, Vol. 3, IEEE, 2000, pp. 1551–1573.

S. Wang, J. Yu, Optimal sizing of the caes system in a power system

with high wind power penetration, International Journal of Electrical

Power & Energy Systems 37 (1) (2012) 117–125.

P. Denholm, G. L. Kulcinski, Life cycle energy requirements and greenhouse

gas emissions from large scale energy storage systems, Energy

Conversion and Management 45 (13) (2004) 2153–2172.

J. Skorek, K. Banasiak, et al., Thermodynamic analysis of

the compressed-air energy storage systems operation, Inzynieria

Chemiczna I Procesowa 27 (1) (2006) 187–200.

A. HYSYS, A user guide manual, Burlington, MA: Aspen Technology.

. Bartela, A. Skorek-Osikowska, J. Kotowicz, Risk analysis related

to the implementation of a co2 separation technology in a coal-fired

supercritical combined heat and power plant, Rynek Energii 110 (1)

(2014) 90–95.

A. Grzebielec, A. Rusowicz, J. Kuta, Role of installations based on heat

pumps cycles in virtual power plants, Rynek Energii 110 (1) (2014) 40–

J. Kupecki, Modeling platform for a micro-chp system with sofc operating

under load changes, Applied Mechanics and Materials 607 (2014)

–208.

H. Lund, G. Salgi, The role of compressed air energy storage (caes) in

future sustainable energy systems, Energy Conversion and Management

(5) (2009) 1172–1179.

H. Lund, G. Salgi, B. Elmegaard, A. N. Andersen, Optimal operation

strategies of compressed air energy storage (caes) on electricity spot

markets with fluctuating prices, Applied thermal engineering 29 (5)

(2009) 799–806.

A. Skorek-Osikowska, L. Bartela, J. Kotowicz, A comparative thermodynamic,

economic and risk analysis concerning implementation of

oxy-combustion power plants integrated with cryogenic and hybrid air

separation units, Energy Conversion and Management 92 (2015) 421–


Refbacks

  • There are currently no refbacks.