Use of computer modeling for defect engineering in Czochralski silicon growth

Vladimir Artemyev, Andrey Smirnov, Vladimir Kalaev, Vasif Mamedov, Tomasz Wejrzanowski, Mateusz Grybczuk, Peter Dold, Roland Kunert


The yield and quality of silicon wafers are mostly determined by defects, including grain boundaries, dislocations, vacancies,
interstitials, and vacancy and oxygen clusters. Active generation and multiplication of dislocations during Czochralski monosilicon
crystal growth is almost always followed by a transition to multicrystalline material and is called structure loss. Possible
factors in structure loss are related to high thermal stresses, fluctuations of local crystallization rate caused by melt flow
turbulence, melt undercooling and incorporation of solid particles from the melt into the crystal. Experimental analysis of
dislocation density distributions in grown crystals contributes to an understanding of the key reasons for structure loss: particle
incorporation at the crystallization front and strong fluctuations of crystallization rate with temporal remelting. Comparison of
experimental dislocation density measurements and modeling results calculated using the Alexander-Haasen model showed
good agreement for silicon samples. The Alexander-Haasen model provides reasonably accurate results for dislocation
density accompanying structure loss phenomena and can be used to predict dislocation density and residual stresses in
multicrystalline Czochralski silicon ingots, which are grown for the purpose of manufacturing polysilicon rods for Siemens
reactors and silicon construction elements.


Czochralski silicon growth; Structure loss; Dislocation density

Full Text:



Fraunhofer ise: Photovoltaics report, available online: dam/ise/de/documents/publications

/studies/photovoltaics-report.pdf (2018).

M. S. Kulkarni, J. C. Holzer, L. W. Ferry, The agglomeration

dynamics of self-interstitials in growing czochralski silicon crystals,

Journal of Crystal Growth 284 (3) (2005) 353 – 368.


A. Vorob’ev, A. Sid’ko, V. Kalaev, Advanced chemical model for analysis

of cz and ds si-crystal growth, Journal of Crystal Growth 386 (2014)

– 234. doi:10.1016/j.jcrysgro.2013.10.022.

V. Kalaev, A. Sattler, L. Kadinski, Crystal twisting in cz

si growth, Journal of Crystal Growth 413 (2015) 12 – 16.


O. Smirnova, N. Durnev, K. Shandrakova, E. Mizitov, V. Soklakov,

Optimization of furnace design and growth parameters for si

cz growth, using numerical simulation, Journal of Crystal Growth

(7) (2008) 2185 – 2191, the Proceedings of the 15th International

Conference on Crystal Growth (ICCG-15) in conjunction

with the International Conference on Vapor Growth and Epitaxy and

the US Biennial Workshop on Organometallic Vapor Phase Epitaxy.


A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Investigation

of different cases of dislocation generation during industrial cz

silicon pulling, physica status solidi (c) 13 (10-12) (2016) 827–832.


A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Characterization

of the loss of the dislocation-free growth during czochralski

silicon pulling, Journal of Crystal Growth 458 (2017) 120 – 128.


Y. Wang, K. Kakimoto, An in-situ x-ray topography observation of

dislocations, crystal-melt interface and melting of silicon, Microelectronic

Engineering 56 (1) (2001) 143 – 146, sub-Quarter-Micron Silicon

Issues in the 200/300 mm Conversion Era. doi:10.1016/S0167-


A. Giannattasio, S. Senkader, R. J. Falster, P. R. Wilshaw, Generation

of dislocation glide loops in czochralski silicon, Journal of Physics:

Condensed Matter 14 (48) (2002) 12981.

H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond

structure, Vol. 22 of Solid State Physics, Academic Press, 1969, pp.

– 158. doi:10.1016/S0081-1947(08)60031-4.

T. Wejrzanowski, K. J. Kurzydlowski, Stereology of grains in

nano-crystals, Solid State Phenomena 94 (2003) 221–228.


T. Wejrzanowski, W. Spychalski, K. Rozniatowski, K. Kurzydlowski, Image

based analysis of complex microstructures of engineering materials,

International Journal of Applied Mathematics and Computer Science

(1) (2008) 33–39. doi:10.2478/v10006-008-0003-1.

F. Secco d’ Aragona, Dislocation etch for (100) planes in silicon,

Journal of The Electrochemical Society 119 (7) (1972) 948–951.


CGSim Flow Module, Theory Manual, Version 16.1, STR IP Holding,

Richmond, VA, USA, 2017.

B. Gao, S. Nakano, K. Kakimoto, Highly efficient and stable implementation

of the alexander-haasen model for numerical analysis of dislocation

in crystal growth, Journal of Crystal Growth 369 (2013) 32 – 37.


V. N. Erofeev, V. I. Nikitenko, Comparison of theory of dislocation mobility

with experimental data for silicon, Soviet Physics Jetp 33 (5).

V. Artemyev, A. Smirnov, V. Kalaev, V. Mamedov, A. Sidko, O. Podkopaev,

E. Kravtsova, A. Shimansky, Modeling of dislocation dynamics

in germanium czochralski growth, Journal of Crystal Growth 468

(2017) 443 – 447, the 18th International Conference on Crystal Growth

and Epitaxy (ICCGE-18). doi:10.1016/j.jcrysgro.2017.01.032.

N. Miyazaki, H. Uchida, T. Munakata, K. Fujioka, Y. Sugino, Thermal

stress analysis of silicon bulk single crystal during czochralski growth,

Journal of Crystal Growth 125 (1) (1992) 102 – 111. doi:10.1016/0022-



  • There are currently no refbacks.