Impact of selected parameters on performance of the Adiabatic Liquid Air Energy Storage system
Abstract
The paper presents a thermodynamic analysis of a selected hypothetical liquid air energy storage (LAES) system. Theadiabatic LAES cycle is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuelcombustion. In such a system, heat of compression is stored and subsequently used during the expansion process in theturbine.A mathematical model of the adiabatic LAES system was constructed. Balance calculation for a selected configuration ofthe energy storage system was performed. The influence of pressure in the air liquefaction cycle and the gas turbine powergeneration cycle on storage energy efficiency was analyzed. The results show that adiabatic liquid air energy storage systemscould be very effective systems for storing electrical power, with efficiency levels reaching as high as 57%.References
[1] M. Wołowicz, J. Milewski, K. Futyma, W. Bujalski, Boosting the efficiency
of an 800 mw-class power plant through utilization of low temperature
heat of flue gases, in: Applied Mechanics and Materials, Vol.
483, Trans Tech Publ, 2014, pp. 315–321.
[2] A. Skorek-Osikowska, L. Bartela, Model of a supercritical oxy-boileranalysis
of the selected parameters, Rynek Energii (5) (2010) 69–75.
[3] K. Badyda, Characteristcs of advanced gas turbine cycles, Rynek Energii
(3) (2010) 80–86.
[4] J. Kotowicz, Ł. Bartela, The influence of the legal and economical environment
and the profile of activities on the optimal design features
of a natural-gas-fired combined heat and power plant, Energy 36 (1)
(2011) 328–338.
[5] J. Kotowicz, M. Job, M. Brze˛czek, The characteristics of ultramodern
combined cycle power plants, Energy 92 (2015) 197–211.
[6] M. Skrzypek, R. Laskowski, Thermal-hydraulic calculations for a fuel
assembly in a european pressurized reactor using the relap5 code,
Nukleonika 60 (3) (2015) 537–544.
[7] D. Ziviani, A. Beyene, M. Venturini, Advances and challenges in orc
systems modeling for low grade thermal energy recovery, Applied Energy
121 (2014) 79–95.
[8] H. Madi, A. Lanzini, S. Diethelm, D. Papurello, M. Lualdi, J. G. Larsen,
M. Santarelli, et al., Solid oxide fuel cell anode degradation by the
effect of siloxanes, Journal of Power Sources 279 (2015) 460–471.
[9] J. Milewski, A. Miller, J. Sałaci´ nski, Off-design analysis of sofc hybrid
system, International Journal of Hydrogen Energy 32 (6) (2007) 687–
698.
[10] J. Kupecki, Modeling platform for a micro-chp system with sofc operating
under load changes, in: Applied Mechanics and Materials, Vol.
607, Trans Tech Publ, 2014, pp. 205–208.
[11] J. Milewski, T. S´wiercz, K. Badyda, A. Miller, A. Dmowski, P. Biczel,
The control strategy for a molten carbonate fuel cell hybrid system,
international journal of hydrogen energy 35 (7) (2010) 2997–3000.
[12] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,
Variant analysis of the structure and parameters of sofc hybrid systems,
in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,
2013, pp. 306–312.
[13] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic
numerical analysis of cross-, co-, and counter-current flow configuration
of a 1 kw-class solid oxide fuel cell stack, International Journal
of Hydrogen Energy 40 (45) (2015) 15834–15844.
[14] J. Milewski, K. Badyda, Z. Misztal, M. Wołowicz, Combined heat and
power unit based on polymeric electrolyte membrane fuel cell in a hotel
application, Rynek Energii (5) (2010) 118–123.
[15] J. Milewski, J. Lewandowski, Solid oxide fuel cell fuelled by biofuels,
ECS Transactions 25 (2) (2009) 1031–1040.
[16] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide fuel
cells fed by dme, International Journal of Hydrogen Energy 40 (35)
(2015) 12009–12022.
[17] J. Milewski, W. Bujalski, M. Wołowicz, K. Futyma, J. Kucowski,
R. Bernat, Experimental investigation of co 2 separation from lignite
flue gases by 100 cm 2 single molten carbonate fuel cell, International
Journal of Hydrogen Energy 39 (3) (2014) 1558–1563.
[18] J. Milewski, G. Discepoli, U. Desideri, Modeling the performance of
mcfc for various fuel and oxidant compositions, International Journal
of Hydrogen Energy 39 (22) (2014) 11713–11721.
[19] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal
combustion engine fuelled by natural gas operating in distributed generation,
Energy Procedia 14 (2012) 1478–1483.
[20] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a
natural gas fuelled piston engine working in distributed generation system,
Rynek Energii (3) (2011) 33–40.
[21] L. Chybowski, R. Laskowski, K. Gawdzi´nska, An overview of systems
supplying water into the combustion chamber of diesel engines to decrease
the amount of nitrogen oxides in exhaust gas, Journal of Marine
Science and Technology 20 (3) (2015) 393–405.
[22] D. Thombare, S. Verma, Technological development in the stirling
cycle engines, Renewable and Sustainable Energy Reviews 12 (1)
(2008) 1–38.
[23] A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a
dynamic model of crankshaft assembly with three degrees of freedom,
in: Methods and Models in Automation and Robotics (MMAR), 2015
20th International Conference on, IEEE, 2015, pp. 1038–1043.
[24] A. Chmielewski, R. Gumin´ski, J. Ma˛czak, S. Radkowski, P. Szulim,
Aspects of balanced development of res and distributed microcogeneration
use in poland: Case study of a chp with stirling engine,
Renewable and Sustainable Energy Reviews 60 (2016) 930–952.
[25] A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak, P. Szulim, Research
study of the micro cogeneration system with automatic loading
unit, in: Challenges in Automation, Robotics and Measurement Techniques,
Springer, 2016, pp. 375–386.
[26] K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, F. Duan, Stirling cycle
engines for recovering low and moderate temperature heat: A review,
Renewable and Sustainable Energy Reviews 62 (2016) 89–108.
[27] A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak, P. Szulim,
Research on a micro cogeneration system with an automatic loadapplying
entity, in: Challenges in Automation, Robotics and Measurement
Techniques, Springer, 2016, pp. 387–395.
[28] K. Badyda, H. Kapro´ n, Operation and development of wind energy in
poland, Rynek Energii 3 (2013) 61–67, in Polish.
[29] K. Badyda, Energetics in poland. do we have a concept of development?,
Energetyka 5 (2015) 274–283, in Polish.
[30] P. Zahadat, J. Milewski, Modeling electrical behavior of solid oxide
electrolyzer cells by using artificial neural network, International Journal
of Hydrogen Energy 40 (23) (2015) 7246–7251.
[31] E. Barbour, D. Mignard, Y. Ding, Y. Li, Adiabatic compressed air energy
storage with packed bed thermal energy storage, Applied Energy 155
(2015) 804–815.
[32] F. de Bosio, V. Verda, Thermoeconomic analysis of a compressed air
energy storage (caes) system integrated with a wind power plant in the
framework of the ipex market, Applied Energy 152 (2015) 173–182.
[33] W. Liu, L. Liu, L. Zhou, J. Huang, Y. Zhang, G. Xu, Y. Yang, Analysis
and optimization of a compressed air energy storage—combined cycle
system, Entropy 16 (6) (2014) 3103–3120.
[34] L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy
storage in the car, Journal of Power Technologies 91 (1) (2011) 23–36.
[35] R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage–
analysis and first results from a pilot scale demonstration plant, Applied
Energy 137 (2015) 845–853.
[36] X. Xue, S. Wang, X. Zhang, C. Cui, L. Chen, Y. Zhou, J. Wang,
Thermodynamic analysis of a novel liquid air energy storage system,
Physics Procedia 67 (2015) 733–738.
[37] B. Kantharaj, S. Garvey, A. Pimm, Thermodynamic analysis of a hybrid
energy storage system based on compressed air and liquid air, Sustainable
Energy Technologies and Assessments 11 (2015) 159–164.
[38] B. Kantharaj, S. Garvey, A. Pimm, Compressed air energy storage with
liquid air capacity extension, Applied Energy 157 (2015) 152–164.
[39] S. Wang, X. Xue, X. Zhang, J. Guo, Y. Zhou, J. Wang, The application
of cryogens in liquid fluid energy storage systems, Physics Procedia
67 (2015) 728–732.
[40] A. J. Pimm, S. D. Garvey, B. Kantharaj, Economic analysis of a hybrid
energy storage system based on liquid air and compressed air, Journal
of Energy Storage 4 (2015) 24–35.
[41] M. Wang, P. Zhao, Y. Wu, Y. Dai, Performance analysis of a novel energy
storage system based on liquid carbon dioxide, Applied Thermal
Engineering 91 (2015) 812–823.
[42] R. F. Abdo, H. T. Pedro, R. N. Koury, L. Machado, C. F. Coimbra, M. P.
Porto, Performance evaluation of various cryogenic energy storage
systems, Energy 90 (2015) 1024–1032.
[43] B. Ameel, C. T’Joen, K. De Kerpel, P. De Jaeger, H. Huisseune,
M. Van Belleghem, M. De Paepe, Thermodynamic analysis of energy
storage with a liquid air rankine cycle, Applied Thermal Engineering
52 (1) (2013) 130–140.
[44] AspenTech, HYSYS 3.2 Operations Guide (2003).
[45] D.-Y. Peng, D. B. Robinson, A new two-constant equation of state, Industrial
& Engineering Chemistry Fundamentals 15 (1) (1976) 59–64.
[46] P. Krawczyk, . Szabłowski, K. Badyda, Energy analysis of liquid air energy
storage cycle. influence of the pressure in the liquefaction section
on the process efficiency, in: Proceedings of VI Science and Technical
Conference - Gaseous Energetics 2016, Vol. 2, 2016, pp. 47–58.
of an 800 mw-class power plant through utilization of low temperature
heat of flue gases, in: Applied Mechanics and Materials, Vol.
483, Trans Tech Publ, 2014, pp. 315–321.
[2] A. Skorek-Osikowska, L. Bartela, Model of a supercritical oxy-boileranalysis
of the selected parameters, Rynek Energii (5) (2010) 69–75.
[3] K. Badyda, Characteristcs of advanced gas turbine cycles, Rynek Energii
(3) (2010) 80–86.
[4] J. Kotowicz, Ł. Bartela, The influence of the legal and economical environment
and the profile of activities on the optimal design features
of a natural-gas-fired combined heat and power plant, Energy 36 (1)
(2011) 328–338.
[5] J. Kotowicz, M. Job, M. Brze˛czek, The characteristics of ultramodern
combined cycle power plants, Energy 92 (2015) 197–211.
[6] M. Skrzypek, R. Laskowski, Thermal-hydraulic calculations for a fuel
assembly in a european pressurized reactor using the relap5 code,
Nukleonika 60 (3) (2015) 537–544.
[7] D. Ziviani, A. Beyene, M. Venturini, Advances and challenges in orc
systems modeling for low grade thermal energy recovery, Applied Energy
121 (2014) 79–95.
[8] H. Madi, A. Lanzini, S. Diethelm, D. Papurello, M. Lualdi, J. G. Larsen,
M. Santarelli, et al., Solid oxide fuel cell anode degradation by the
effect of siloxanes, Journal of Power Sources 279 (2015) 460–471.
[9] J. Milewski, A. Miller, J. Sałaci´ nski, Off-design analysis of sofc hybrid
system, International Journal of Hydrogen Energy 32 (6) (2007) 687–
698.
[10] J. Kupecki, Modeling platform for a micro-chp system with sofc operating
under load changes, in: Applied Mechanics and Materials, Vol.
607, Trans Tech Publ, 2014, pp. 205–208.
[11] J. Milewski, T. S´wiercz, K. Badyda, A. Miller, A. Dmowski, P. Biczel,
The control strategy for a molten carbonate fuel cell hybrid system,
international journal of hydrogen energy 35 (7) (2010) 2997–3000.
[12] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,
Variant analysis of the structure and parameters of sofc hybrid systems,
in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,
2013, pp. 306–312.
[13] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic
numerical analysis of cross-, co-, and counter-current flow configuration
of a 1 kw-class solid oxide fuel cell stack, International Journal
of Hydrogen Energy 40 (45) (2015) 15834–15844.
[14] J. Milewski, K. Badyda, Z. Misztal, M. Wołowicz, Combined heat and
power unit based on polymeric electrolyte membrane fuel cell in a hotel
application, Rynek Energii (5) (2010) 118–123.
[15] J. Milewski, J. Lewandowski, Solid oxide fuel cell fuelled by biofuels,
ECS Transactions 25 (2) (2009) 1031–1040.
[16] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide fuel
cells fed by dme, International Journal of Hydrogen Energy 40 (35)
(2015) 12009–12022.
[17] J. Milewski, W. Bujalski, M. Wołowicz, K. Futyma, J. Kucowski,
R. Bernat, Experimental investigation of co 2 separation from lignite
flue gases by 100 cm 2 single molten carbonate fuel cell, International
Journal of Hydrogen Energy 39 (3) (2014) 1558–1563.
[18] J. Milewski, G. Discepoli, U. Desideri, Modeling the performance of
mcfc for various fuel and oxidant compositions, International Journal
of Hydrogen Energy 39 (22) (2014) 11713–11721.
[19] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal
combustion engine fuelled by natural gas operating in distributed generation,
Energy Procedia 14 (2012) 1478–1483.
[20] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a
natural gas fuelled piston engine working in distributed generation system,
Rynek Energii (3) (2011) 33–40.
[21] L. Chybowski, R. Laskowski, K. Gawdzi´nska, An overview of systems
supplying water into the combustion chamber of diesel engines to decrease
the amount of nitrogen oxides in exhaust gas, Journal of Marine
Science and Technology 20 (3) (2015) 393–405.
[22] D. Thombare, S. Verma, Technological development in the stirling
cycle engines, Renewable and Sustainable Energy Reviews 12 (1)
(2008) 1–38.
[23] A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a
dynamic model of crankshaft assembly with three degrees of freedom,
in: Methods and Models in Automation and Robotics (MMAR), 2015
20th International Conference on, IEEE, 2015, pp. 1038–1043.
[24] A. Chmielewski, R. Gumin´ski, J. Ma˛czak, S. Radkowski, P. Szulim,
Aspects of balanced development of res and distributed microcogeneration
use in poland: Case study of a chp with stirling engine,
Renewable and Sustainable Energy Reviews 60 (2016) 930–952.
[25] A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak, P. Szulim, Research
study of the micro cogeneration system with automatic loading
unit, in: Challenges in Automation, Robotics and Measurement Techniques,
Springer, 2016, pp. 375–386.
[26] K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, F. Duan, Stirling cycle
engines for recovering low and moderate temperature heat: A review,
Renewable and Sustainable Energy Reviews 62 (2016) 89–108.
[27] A. Chmielewski, S. Gontarz, R. Gumin´ski, J. Ma˛czak, P. Szulim,
Research on a micro cogeneration system with an automatic loadapplying
entity, in: Challenges in Automation, Robotics and Measurement
Techniques, Springer, 2016, pp. 387–395.
[28] K. Badyda, H. Kapro´ n, Operation and development of wind energy in
poland, Rynek Energii 3 (2013) 61–67, in Polish.
[29] K. Badyda, Energetics in poland. do we have a concept of development?,
Energetyka 5 (2015) 274–283, in Polish.
[30] P. Zahadat, J. Milewski, Modeling electrical behavior of solid oxide
electrolyzer cells by using artificial neural network, International Journal
of Hydrogen Energy 40 (23) (2015) 7246–7251.
[31] E. Barbour, D. Mignard, Y. Ding, Y. Li, Adiabatic compressed air energy
storage with packed bed thermal energy storage, Applied Energy 155
(2015) 804–815.
[32] F. de Bosio, V. Verda, Thermoeconomic analysis of a compressed air
energy storage (caes) system integrated with a wind power plant in the
framework of the ipex market, Applied Energy 152 (2015) 173–182.
[33] W. Liu, L. Liu, L. Zhou, J. Huang, Y. Zhang, G. Xu, Y. Yang, Analysis
and optimization of a compressed air energy storage—combined cycle
system, Entropy 16 (6) (2014) 3103–3120.
[34] L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy
storage in the car, Journal of Power Technologies 91 (1) (2011) 23–36.
[35] R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage–
analysis and first results from a pilot scale demonstration plant, Applied
Energy 137 (2015) 845–853.
[36] X. Xue, S. Wang, X. Zhang, C. Cui, L. Chen, Y. Zhou, J. Wang,
Thermodynamic analysis of a novel liquid air energy storage system,
Physics Procedia 67 (2015) 733–738.
[37] B. Kantharaj, S. Garvey, A. Pimm, Thermodynamic analysis of a hybrid
energy storage system based on compressed air and liquid air, Sustainable
Energy Technologies and Assessments 11 (2015) 159–164.
[38] B. Kantharaj, S. Garvey, A. Pimm, Compressed air energy storage with
liquid air capacity extension, Applied Energy 157 (2015) 152–164.
[39] S. Wang, X. Xue, X. Zhang, J. Guo, Y. Zhou, J. Wang, The application
of cryogens in liquid fluid energy storage systems, Physics Procedia
67 (2015) 728–732.
[40] A. J. Pimm, S. D. Garvey, B. Kantharaj, Economic analysis of a hybrid
energy storage system based on liquid air and compressed air, Journal
of Energy Storage 4 (2015) 24–35.
[41] M. Wang, P. Zhao, Y. Wu, Y. Dai, Performance analysis of a novel energy
storage system based on liquid carbon dioxide, Applied Thermal
Engineering 91 (2015) 812–823.
[42] R. F. Abdo, H. T. Pedro, R. N. Koury, L. Machado, C. F. Coimbra, M. P.
Porto, Performance evaluation of various cryogenic energy storage
systems, Energy 90 (2015) 1024–1032.
[43] B. Ameel, C. T’Joen, K. De Kerpel, P. De Jaeger, H. Huisseune,
M. Van Belleghem, M. De Paepe, Thermodynamic analysis of energy
storage with a liquid air rankine cycle, Applied Thermal Engineering
52 (1) (2013) 130–140.
[44] AspenTech, HYSYS 3.2 Operations Guide (2003).
[45] D.-Y. Peng, D. B. Robinson, A new two-constant equation of state, Industrial
& Engineering Chemistry Fundamentals 15 (1) (1976) 59–64.
[46] P. Krawczyk, . Szabłowski, K. Badyda, Energy analysis of liquid air energy
storage cycle. influence of the pressure in the liquefaction section
on the process efficiency, in: Proceedings of VI Science and Technical
Conference - Gaseous Energetics 2016, Vol. 2, 2016, pp. 47–58.
Published
2016-12-04
How to Cite
KRAWCZYK, Piotr et al.
Impact of selected parameters on performance of the Adiabatic Liquid Air Energy Storage system.
Journal of Power Technologies, [S.l.], v. 96, n. 4, p. 238--244, dec. 2016.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/983>. Date accessed: 24 dec. 2024.
Issue
Section
Energy Conversion and Storage
Keywords
energy storage; adiabatic LAES; air liquefaction
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).