Multiple approach to analysis of H2O injection into a gas turbine
Abstract
This paper presents a thermodynamic analysis of the Brayton cycle and an upgrade to it involving the injection of H2O intothe gas turbine cycle. Upgrades are generally considered to be environmentally-friendly solutions and lead to an increase inefficiency, but in the literature there is no clear answer as to what type of upgrade is the best. Computational Flow Mechanicscodes have been used for numerical analysis of: the Brayton simple cycle, the Brayton cycle with water injection into thecompressor and with regeneration prior to the combustion chamber, the STIG (steam injection gas turbine), and the CSTIG(combined steam injection gas turbine) system. Different ways of analyzing H2O injection into the gas turbine cycle arediscussed.References
[1] E. Directive, Directive 2010/75/eu of the european parliament and of
the council of 24 november 2010 on industrial emissions (integrated
pollution prevention and control), Official Journal of the European
Union L 334 (2010) 17–119.
[2] R. Carapellucci, A. Milazzo, Repowering combined cycle power plants
by a modified stig configuration, Energy Conversion and Management
48 (5) (2007) 1590–1600.
[3] A. Poullikkas, An overview of current and future sustainable gas turbine
technologies, Renewable and Sustainable Energy Reviews 9 (5)
(2005) 409–443.
[4] M. A. Saad, D. Y. Cheng, The new lm2500 cheng cycle for power generation
and cogeneration, Energy conversion and management 38 (15)
(1997) 1637–1646.
[5] P. Ziółkowski, M. Lema´ nski, J. Badur, L. Nastałek, Power augmentation
of pge gorzow’s gas turbine by steam injection - thermodynamic
overview, Rynek Energii 98 (2) (2012) 161–167.
[6] K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Power enhancement
of the brayton cycle by steam utilization, Archives of Thermodynamics
33 (3) (2012) 36–47.
[7] A. Chrzczonowski, K. Jesionek, B. J., P. Ziółkowski, Analysis of operation
of combined stig installation, in: Producerea, Transportul¸si Utilizarea
Energiei, Volumul Conferin¸tei S¸ tiin¸ta Moderna˘s¸i Energia SME
2012, Universitatea Technic˘adin Cluj-Napoca, Cluj-Napoca, 2012, pp.
66–73.
[8] T. Srinivas, A. Gupta, B. Reddy, Sensitivity analysis of stig based combined
cycle with dual pressure hrsg, International journal of thermal
sciences 47 (9) (2008) 1226–1234.
[9] D. Y. Cheng, Regenerative parallel compound dual-fluid heat engine,
uS Patent 4,128,994 (Dec. 12 1978).
[10] V. de Biasi, Cln uprates 501 to 6 mw with under 18 ppm nox and zero
co, Gas Turbine World 42 (4) (2012) 10–13.
[11] K. Jesionek, A. Chrzczonowski, J. Badur, M. Lema´ nski, On the parametric
analysis of performance of advanced cheng cycle, Zeszyty
Naukowe Katedry Mechaniki Stosowanej Politechniki S´ la˛skiej 23
(2004) 12–23, in Polish.
[12] G. Polonsky, M. Livshits, A. I. Selwynraj, S. Iniyan, L. Suganthi,
A. Kribus, Annual performance of the solar hybrid stig cycle, Solar Energy
107 (2014) 278–291.
[13] W. Kordylewski, Combustion and Fuels, Wroclaw University of Technology
Publ., 2000, in Polish.
[14] J. Skorek, J. Kalina, Gas turbines cogeneration units, WNT,Warszawa,
2005, in Polish.
[15] J. Badur, Numerical Modeling of Sustainable Combustion at Gas Turbine,
IF-FM PAS, Gda´nsk, 2003, in Polish.
[16] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Thermodynamic, ecological
and economic aspects of the use of the gas turbine for heat
supply to the stripping process in a supercritical chp plant integrated
with a carbon capture installation, Energy Conversion and Management
85 (2014) 750–763.
[17] V. deBiasi, Combined cycle heat rates at simple cycle $/kW plant costs,
Gas Turbine World 43 (2) (2013) 22–29.
[18] F. Wang, J.-S. Chiou, Performance improvement for a simple cycle gas
turbine genset—-a retrofitting example, Applied Thermal Engineering
22 (10) (2002) 1105–1115.
[19] P. Ziółkowski, J. Badur, Clean gas technologies-towards zero-emission
repowering of pomerania, Transactions of the Institute of Fluid-Flow
Machinery 124 (2012) 51–80.
[20] M. Jonsson, J. Yan, Humidified gas turbines—a review of proposed
and implemented cycles, Energy 30 (7) (2005) 1013–1078.
[21] K. Nishida, T. Takagi, S. Kinoshita, Regenerative steam-injection gasturbine
systems, Applied Energy 81 (3) (2005) 231–246.
[22] A. Chrzczonowski, Cheng cycle as proecological electrical and heat
energy source, Ph.D. thesis, Wroclaw University of Technology, Wroclaw,
in Polish (2006).
[23] J. Topolski, Combustion diagnosis in combined gas-steam cycle, Ph.D.
thesis, IF-FM PASci, Gda´nsk (2002).
[24] K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Enhancement
of the brayton cycle efficiency by water or steam utilization, Transactions
of the Institute of Fluid-Flow Machinery 124 (2012) 93–109.
[25] J. A. Goli ´ nski, K. Jesionek, Combined air/steam power plants, Vol. 39,
Maszyny Przepływowe, Gda´nsk, 2009, in Polish.
[26] M. De Paepe, E. Dick, Technological and economical analysis of water
recovery in steam injected gas turbines, Applied Thermal Engineering
21 (2) (2001) 135–156.
[27] A.W. Sinjawin, S. D. Frołow,W.W. Smancier, Optymalization of parameters
of rotary condenser-separator in stig with recovery water system,
in: Charkow, 1997, pp. 50–54, in Russian.
[28] K. Wójs, P. Szulc, T. Tietze, Odzysk i zagospodarowanie niskotemperaturowego
ciepła odpadowego ze spalin wylotowych [Low-temperature
waste heat recovery from exchaust gases], Wydawnictwo Naukowe
PWN SA, 2015, in Polish.
[29] J. Badur, M. Karcz, R. Kucharski, M. Lema´ nski, S. Kowalczyk,
A. Wi´sniewski, S. Lewandowski, Technical Economic and Environmental
Aspects Combined Cycle Power Plants, Gda´nsk UT Press, Gda´nsk,
2005, Ch. Numerical modeling of degradation effects in a gas turbine
silo-combustion chamber, pp. 135–143.
[30] J. Badur, P. Ziółkowski, D. Sławi´ nski, S. Kornet, An approach for estimation
of water wall degradation within pulverized-coal boilers, Energy
92 (2015) 142–152.
[31] J. Sowi´ nski, Analysis of electricity production costs in the system power plant, Polityka Energetyczna 10 (2) (2007) 229–239, in Polish.
[32] R. Bartnik, Combined cycle power plant. Thermal and economic effectiveness,
WNT, Warsaw (2009), 2012.
[33] M. P. Boyce, Gas turbine engineering handbook, Butterworth-
Heinemann, Houston, 2002.
[34] Press office of Energa Group.
URL http://media.energa.pl
[35] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a
supercritical coal-fired chp plant integrated with an absorption carbon
capture installation, Energy 64 (2014) 513–523.
[36] M. Brze˛czek, M. Job, The economic comparison of combined cycle
power plants without and with carbon capture installation, Rynek Energii
112 (3) (2014) 88–92, in Polish.
[37] J. Kotowicz, M. Brze˛czek, M. Job, The thermo - economic analysis of
the supercritical oxy - type unit integrated with the orc modules, Rynek
Energii 118 (3) (2015) 64–71, in Polish.
[38] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, Thermodynamic and
economic evaluation of a co2 membrane separation unit integrated
into a supercritical coal-fired heat and power plant, Journal of Power
Technologies 95 (3) (2015) 201–210.
[39] J. Szargut, W. Stanek, Thermo-ecological optimization of a solar collector,
Energy 32 (4) (2007) 584–590.
[40] Z. Gnutek, On the goli ´ nski-jesionek multistage combined air/steam
systems with external combustion, Transactions of the Institute of
Fluid-Flow Machinery 126 (2014) 33–54.
[41] D. Mikielewicz, J. Wajs, P. Ziółkowski, J. Mikielewicz, Utilisation of
waste heat from the power plant by use of the orc aided with bleed
steam and extra source of heat, Energy 97 (2016) 11–19.
the council of 24 november 2010 on industrial emissions (integrated
pollution prevention and control), Official Journal of the European
Union L 334 (2010) 17–119.
[2] R. Carapellucci, A. Milazzo, Repowering combined cycle power plants
by a modified stig configuration, Energy Conversion and Management
48 (5) (2007) 1590–1600.
[3] A. Poullikkas, An overview of current and future sustainable gas turbine
technologies, Renewable and Sustainable Energy Reviews 9 (5)
(2005) 409–443.
[4] M. A. Saad, D. Y. Cheng, The new lm2500 cheng cycle for power generation
and cogeneration, Energy conversion and management 38 (15)
(1997) 1637–1646.
[5] P. Ziółkowski, M. Lema´ nski, J. Badur, L. Nastałek, Power augmentation
of pge gorzow’s gas turbine by steam injection - thermodynamic
overview, Rynek Energii 98 (2) (2012) 161–167.
[6] K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Power enhancement
of the brayton cycle by steam utilization, Archives of Thermodynamics
33 (3) (2012) 36–47.
[7] A. Chrzczonowski, K. Jesionek, B. J., P. Ziółkowski, Analysis of operation
of combined stig installation, in: Producerea, Transportul¸si Utilizarea
Energiei, Volumul Conferin¸tei S¸ tiin¸ta Moderna˘s¸i Energia SME
2012, Universitatea Technic˘adin Cluj-Napoca, Cluj-Napoca, 2012, pp.
66–73.
[8] T. Srinivas, A. Gupta, B. Reddy, Sensitivity analysis of stig based combined
cycle with dual pressure hrsg, International journal of thermal
sciences 47 (9) (2008) 1226–1234.
[9] D. Y. Cheng, Regenerative parallel compound dual-fluid heat engine,
uS Patent 4,128,994 (Dec. 12 1978).
[10] V. de Biasi, Cln uprates 501 to 6 mw with under 18 ppm nox and zero
co, Gas Turbine World 42 (4) (2012) 10–13.
[11] K. Jesionek, A. Chrzczonowski, J. Badur, M. Lema´ nski, On the parametric
analysis of performance of advanced cheng cycle, Zeszyty
Naukowe Katedry Mechaniki Stosowanej Politechniki S´ la˛skiej 23
(2004) 12–23, in Polish.
[12] G. Polonsky, M. Livshits, A. I. Selwynraj, S. Iniyan, L. Suganthi,
A. Kribus, Annual performance of the solar hybrid stig cycle, Solar Energy
107 (2014) 278–291.
[13] W. Kordylewski, Combustion and Fuels, Wroclaw University of Technology
Publ., 2000, in Polish.
[14] J. Skorek, J. Kalina, Gas turbines cogeneration units, WNT,Warszawa,
2005, in Polish.
[15] J. Badur, Numerical Modeling of Sustainable Combustion at Gas Turbine,
IF-FM PAS, Gda´nsk, 2003, in Polish.
[16] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Thermodynamic, ecological
and economic aspects of the use of the gas turbine for heat
supply to the stripping process in a supercritical chp plant integrated
with a carbon capture installation, Energy Conversion and Management
85 (2014) 750–763.
[17] V. deBiasi, Combined cycle heat rates at simple cycle $/kW plant costs,
Gas Turbine World 43 (2) (2013) 22–29.
[18] F. Wang, J.-S. Chiou, Performance improvement for a simple cycle gas
turbine genset—-a retrofitting example, Applied Thermal Engineering
22 (10) (2002) 1105–1115.
[19] P. Ziółkowski, J. Badur, Clean gas technologies-towards zero-emission
repowering of pomerania, Transactions of the Institute of Fluid-Flow
Machinery 124 (2012) 51–80.
[20] M. Jonsson, J. Yan, Humidified gas turbines—a review of proposed
and implemented cycles, Energy 30 (7) (2005) 1013–1078.
[21] K. Nishida, T. Takagi, S. Kinoshita, Regenerative steam-injection gasturbine
systems, Applied Energy 81 (3) (2005) 231–246.
[22] A. Chrzczonowski, Cheng cycle as proecological electrical and heat
energy source, Ph.D. thesis, Wroclaw University of Technology, Wroclaw,
in Polish (2006).
[23] J. Topolski, Combustion diagnosis in combined gas-steam cycle, Ph.D.
thesis, IF-FM PASci, Gda´nsk (2002).
[24] K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Enhancement
of the brayton cycle efficiency by water or steam utilization, Transactions
of the Institute of Fluid-Flow Machinery 124 (2012) 93–109.
[25] J. A. Goli ´ nski, K. Jesionek, Combined air/steam power plants, Vol. 39,
Maszyny Przepływowe, Gda´nsk, 2009, in Polish.
[26] M. De Paepe, E. Dick, Technological and economical analysis of water
recovery in steam injected gas turbines, Applied Thermal Engineering
21 (2) (2001) 135–156.
[27] A.W. Sinjawin, S. D. Frołow,W.W. Smancier, Optymalization of parameters
of rotary condenser-separator in stig with recovery water system,
in: Charkow, 1997, pp. 50–54, in Russian.
[28] K. Wójs, P. Szulc, T. Tietze, Odzysk i zagospodarowanie niskotemperaturowego
ciepła odpadowego ze spalin wylotowych [Low-temperature
waste heat recovery from exchaust gases], Wydawnictwo Naukowe
PWN SA, 2015, in Polish.
[29] J. Badur, M. Karcz, R. Kucharski, M. Lema´ nski, S. Kowalczyk,
A. Wi´sniewski, S. Lewandowski, Technical Economic and Environmental
Aspects Combined Cycle Power Plants, Gda´nsk UT Press, Gda´nsk,
2005, Ch. Numerical modeling of degradation effects in a gas turbine
silo-combustion chamber, pp. 135–143.
[30] J. Badur, P. Ziółkowski, D. Sławi´ nski, S. Kornet, An approach for estimation
of water wall degradation within pulverized-coal boilers, Energy
92 (2015) 142–152.
[31] J. Sowi´ nski, Analysis of electricity production costs in the system power plant, Polityka Energetyczna 10 (2) (2007) 229–239, in Polish.
[32] R. Bartnik, Combined cycle power plant. Thermal and economic effectiveness,
WNT, Warsaw (2009), 2012.
[33] M. P. Boyce, Gas turbine engineering handbook, Butterworth-
Heinemann, Houston, 2002.
[34] Press office of Energa Group.
URL http://media.energa.pl
[35] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a
supercritical coal-fired chp plant integrated with an absorption carbon
capture installation, Energy 64 (2014) 513–523.
[36] M. Brze˛czek, M. Job, The economic comparison of combined cycle
power plants without and with carbon capture installation, Rynek Energii
112 (3) (2014) 88–92, in Polish.
[37] J. Kotowicz, M. Brze˛czek, M. Job, The thermo - economic analysis of
the supercritical oxy - type unit integrated with the orc modules, Rynek
Energii 118 (3) (2015) 64–71, in Polish.
[38] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, Thermodynamic and
economic evaluation of a co2 membrane separation unit integrated
into a supercritical coal-fired heat and power plant, Journal of Power
Technologies 95 (3) (2015) 201–210.
[39] J. Szargut, W. Stanek, Thermo-ecological optimization of a solar collector,
Energy 32 (4) (2007) 584–590.
[40] Z. Gnutek, On the goli ´ nski-jesionek multistage combined air/steam
systems with external combustion, Transactions of the Institute of
Fluid-Flow Machinery 126 (2014) 33–54.
[41] D. Mikielewicz, J. Wajs, P. Ziółkowski, J. Mikielewicz, Utilisation of
waste heat from the power plant by use of the orc aided with bleed
steam and extra source of heat, Energy 97 (2016) 11–19.
Published
2016-10-29
How to Cite
ZIÓŁKOWSKI, Paweł et al.
Multiple approach to analysis of H2O injection into a gas turbine.
Journal of Power Technologies, [S.l.], v. 96, n. 3, p. 200--205, oct. 2016.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/956>. Date accessed: 03 jan. 2025.
Issue
Section
Energy from Gas 2016 Conference
Keywords
gas turbine, steam injection, regeneration, water injection, water recovery
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).