Use of a gas turbine in a hybrid power plant integrated with an electrolyser, biomass gasification generator and methanation reactor
Abstract
The main objective of this paper is to evaluate the thermodynamic potential of a complex hybrid power plant based on a gas turbine, integrated with an electrolyser powered by: a wind farm, a biomass gasification unit and a methanation reactor. The system serves as an electricity accumulator. The calculation methodology and the basic assumptions for the analysis are presented. The calculations provided the basic thermodynamic parameters of the streams in all the major points of the system. A gas turbine was selected and key thermodynamic indicators of the system operation were determined. The annual products were calculated and the influence of the size of electrolyser on the share of electricity supply from the wind farm was presented.References
[1] H. Zhao, Q. Wu, S. Hu, H. Xu, C.N. Rasmussen, Review of energy storage system for wind power integration support. Applied Energy 137 (2015) 545–553.
[2] M. Jentsch., T. Trost, M. Sterner, Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario. Energy Procedia 46 (2014) 254 – 261.
[3] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, Z. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review. Renewable Energy 85 (2016), 1371–1390.
[4] T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, A. Orth. Methanation of CO2 - storage of renewable energy in a gas distribution system. Energy, Sustainability and Society (2014) 4:2 DOI 10.1186/s13705-014-0029-1.
[5] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar., D. Stolten, Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy 40 (12) (2015) 4285–4294.
[6] A. Odukoya, G.F. Naterer, M. Roeb, C. Mansilla, J. Mougin, B. Yu, J. Kupecki, I. Iordache, J. Milewski, Progress of the IAHE Nuclear Hydrogen Division on international hydrogen production programs. International Journal of Hydrogen Energy 2016;41(19):7878-7891.
[7] J. Milewski, G. Guandalini, S. Campanari, Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches. Journal of Power Sources, 2014;269:203-211.
[8] D. Węcel, W. Ogulewicz, J. Kotowicz, M. Jurczyk: Dynamika pracy elektrolizerów produkujących wodór. Rynek Energii 2016, 122(1), 59-65.
[9] I. Hannula, Co-production of synthetic fuels and district heat from biomass residues, carbon dioxide and electricity: Performance and cost analysis. Biomass and Bioenergy 74 (2015) 26-46
[10] S. Rönsch et al. Review on methanation – From fundamentals to current projects. Fuel (2015), http://dx.doi.org/10.1016/j. fuel.2015.10.111
[11] H. Iskov, N.B. Rasmussen. Global screening of projects and technologies for Power-to-Gas and Bio-SNG. A reference report. Danish gas Technology Centre, Horsholm 2013.
[12] P. Haro, F. Johnsson, H. Thunman, Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. Energy 101 (2016) 380–389.
[13] D. Barisano, G. Canneto, F. Nanna, E. Alvino, G. Pinto, A. Villone, M. Carnevale, V. Valerio, A. Battafarano, G. Braccio Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reaktor. Fuel Processing Technology 2015, dx.doi.org/10.1016/j.fuproc.2015.06.008.
[14] C.M. van der Meijden, L.P.L.M. Rabou, A. Van der Drift, B.J. Vreugdenhil, R. Smit, large scale production of bio methane from wood. Presented at the International Gas Union Research Conference IGRC, Seoul, South Korea (Conference 19-21 October 2011)
[15] J. Kopyscinski, T. J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009. Fuel 89 (2010) 1763–1783.
[16] T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, A. Orth, Methanation of CO2 - storage of renewable energy in a gas distribution. Energy, Sustainability and Society. DOI 10.1186/s13705-014-0029-1.
[17] M. Sudiro. A. Bertucco, Synthetic Natural Gas (SNG) from Coal and Biomass: a Survey of Existing Process Technologies, Open Issues and Perspectives. Chapter 5 in Natural Gas, book Edited by Primoz Potocnik, ISBN 978-953-307-112-1.
[18] J. Kotowicz, Ł. Bartela, A. Skorek-Osikowska, K. Janusz-Szymańska, T. Chmielniak, L. Remiorz, T. Iluk, Analiza termodynamiczna i ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz membranową separacją ditlenku węgla. Wydawnictwo Politechniki Śląskiej, Gliwice 2012.
[2] M. Jentsch., T. Trost, M. Sterner, Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario. Energy Procedia 46 (2014) 254 – 261.
[3] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, Z. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review. Renewable Energy 85 (2016), 1371–1390.
[4] T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, A. Orth. Methanation of CO2 - storage of renewable energy in a gas distribution system. Energy, Sustainability and Society (2014) 4:2 DOI 10.1186/s13705-014-0029-1.
[5] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar., D. Stolten, Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy 40 (12) (2015) 4285–4294.
[6] A. Odukoya, G.F. Naterer, M. Roeb, C. Mansilla, J. Mougin, B. Yu, J. Kupecki, I. Iordache, J. Milewski, Progress of the IAHE Nuclear Hydrogen Division on international hydrogen production programs. International Journal of Hydrogen Energy 2016;41(19):7878-7891.
[7] J. Milewski, G. Guandalini, S. Campanari, Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches. Journal of Power Sources, 2014;269:203-211.
[8] D. Węcel, W. Ogulewicz, J. Kotowicz, M. Jurczyk: Dynamika pracy elektrolizerów produkujących wodór. Rynek Energii 2016, 122(1), 59-65.
[9] I. Hannula, Co-production of synthetic fuels and district heat from biomass residues, carbon dioxide and electricity: Performance and cost analysis. Biomass and Bioenergy 74 (2015) 26-46
[10] S. Rönsch et al. Review on methanation – From fundamentals to current projects. Fuel (2015), http://dx.doi.org/10.1016/j. fuel.2015.10.111
[11] H. Iskov, N.B. Rasmussen. Global screening of projects and technologies for Power-to-Gas and Bio-SNG. A reference report. Danish gas Technology Centre, Horsholm 2013.
[12] P. Haro, F. Johnsson, H. Thunman, Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. Energy 101 (2016) 380–389.
[13] D. Barisano, G. Canneto, F. Nanna, E. Alvino, G. Pinto, A. Villone, M. Carnevale, V. Valerio, A. Battafarano, G. Braccio Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reaktor. Fuel Processing Technology 2015, dx.doi.org/10.1016/j.fuproc.2015.06.008.
[14] C.M. van der Meijden, L.P.L.M. Rabou, A. Van der Drift, B.J. Vreugdenhil, R. Smit, large scale production of bio methane from wood. Presented at the International Gas Union Research Conference IGRC, Seoul, South Korea (Conference 19-21 October 2011)
[15] J. Kopyscinski, T. J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009. Fuel 89 (2010) 1763–1783.
[16] T. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, A. Orth, Methanation of CO2 - storage of renewable energy in a gas distribution. Energy, Sustainability and Society. DOI 10.1186/s13705-014-0029-1.
[17] M. Sudiro. A. Bertucco, Synthetic Natural Gas (SNG) from Coal and Biomass: a Survey of Existing Process Technologies, Open Issues and Perspectives. Chapter 5 in Natural Gas, book Edited by Primoz Potocnik, ISBN 978-953-307-112-1.
[18] J. Kotowicz, Ł. Bartela, A. Skorek-Osikowska, K. Janusz-Szymańska, T. Chmielniak, L. Remiorz, T. Iluk, Analiza termodynamiczna i ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz membranową separacją ditlenku węgla. Wydawnictwo Politechniki Śląskiej, Gliwice 2012.
Published
2016-07-07
How to Cite
SKOREK-OSIKOWSKA, Anna et al.
Use of a gas turbine in a hybrid power plant integrated with an electrolyser, biomass gasification generator and methanation reactor.
Journal of Power Technologies, [S.l.], v. 96, n. 2, p. 73--80, july 2016.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/869>. Date accessed: 26 dec. 2024.
Issue
Section
Energy Conversion and Storage
Keywords
Power to gas; SNG; Gas turbine; Hybrid power plant
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).