Model-based research on a micro cogeneration system with Stirling engine
Abstract
One of the elements and purposes of the climate-energy policy of the European Union is to increase the efficiency of conversionof the energy from fossil fuels. Managing high-temperature heat losses which accompany the technological processes,especially in thermal power engineering, serves this goal. An example of effective use of this heat is through the applicationof distributed generation devices (including: fuel cells, microturbines, and Stirling engines), which produce in combinationelectric energy, or mechanical energy and heat. This paper presents research into a micro cogeneration system with a Stirlingengine, using nitrogen as a working gas. A crucial element of the research is model-based analysis of changes in selectedthermodynamic parameters, including among others: pressure change in the working cylinder. The presented comparison ofthe research results, as well as the results of simulation, effectively support the prediction processes as regards the system.References
[1] EUCO 169/14 Conclusions, accessed 25.09.2015 (23/24 October
2014).
URL http://www.consilium.europa.eu/
[2] B. Knopf, P. Nahmmacher, E. Schmid, The european renewable energy
target for 2030–an impact assessment of the electricity sector,
Energy policy 85 (2015) 50–60.
[3] A. Calvo-Silvosa, S. I. Antelo, I. Soares, et al., The european lowcarbon
mix for 2030: The role of renewable energy sources in an
environmentally and socially efficient approach, Renewable and Sustainable
Energy Reviews 48 (2015) 49–61.
[4] A. Chmielewski, R. Gumi´ nski, S. Radkowski, P. Szulim, Aspekty wsparcia
i rozwoju mikrokogeneracji rozproszonej na terenie polski, Rynek
energii 5 (114) (2014) 94–101, in Polish.
[5] Directive 2004/8/EC of the European Parliament and of the council of
11 February 2004 on the promotion of cogeneration based on a useful
heat demand in the internal energy market and amending Directive
92/42/EC.
[6] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal
combustion engine fuelled by natural gas operating in distributed generation,
Energy Procedia 14 (2012) 1478–1483.
[7] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,
Variant analysis of the structure and parameters of sofc hybrid systems,
in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,
2013, pp. 306–312.
[8] A. Chmielewski, R. Gumin´ski, K. Lubikowski, J. Ma˛czak, P. Szulim,
Badania układu mikrokogeneracyjnego z silnikiem stirlinga. cze˛s´c´ i [research
on the micro cogeneration system with stirling engine. part i],
Rynek Energii 119 (4) (2015) 42–48, in Polish.
[9] A. Chmielewski, R. Guminski, S. Radkowski, P. Szulim, Experimental
research and application possibilities of microcogeneration system
with stirling engine, Journal of Power Technologies 95 (5) (2015) 14–
22.
[10] A. Chmielewski, R. Gumin´ski, K. Lubikowski, J. Ma˛czak, P. Szulim,
Badania układu mikrokogeneracyjnego z silnikiem stirlinga. Cze˛s´c´ ii
[research on the micro cogeneration system with stirling engine. Part
ii], Rynek Energii 120 (5) (2015) 53–60, in Polish.
[11] T. Li, D. Tang, Z. Li, J. Du, T. Zhou, Y. Jia, Development and test of a
stirling engine driven by waste gases for the micro-chp system, Applied
thermal engineering 33 (2012) 119–123.
[12] C.-H. Cheng, H.-S. Yang, B.-Y. Jhou, Y.-C. Chen, Y.-J. Wang, Dynamic
simulation of thermal-lag stirling engines, Applied energy 108 (2013)
466–476.
[13] C.-H. Cheng, H.-S. Yang, L. Keong, Theoretical and experimental
study of a 300-w beta-type stirling engine, Energy 59 (2013) 590–599.
[14] M. Reséndiz-Antonio, M. Santillán, On the dynamical vs. thermodynamical
performance of a -type stirling engine, Physica A: Statistical
Mechanics and its Applications 409 (2014) 162–174.
[15] G. Xiao, C. Chen, B. Shi, K. Cen, M. Ni, Experimental study on heat transfer of oscillating flow of a tubular stirling engine heater, International
Journal of Heat and Mass Transfer 71 (2014) 1–7.
[16] L. Scollo, P. Valdez, S. Santamarina, M. Chini, J. Baron, Twin cylinder
alpha stirling engine combined model and prototype redesign, International
Journal of Hydrogen Energy 38 (4) (2013) 1988–1996.
[17] C.-H. Cheng, Y.-J. Yu, Dynamic simulation of a beta-type stirling engine
with cam-drive mechanism via the combination of the thermodynamic
and dynamic models, Renewable energy 36 (2) (2011) 714–725.
[18] C.-H. Cheng, Y.-J. Yu, Combining dynamic and thermodynamic models
for dynamic simulation of a beta-type stirling engine with rhombic-drive
mechanism, Renewable energy 37 (1) (2012) 161–173.
[19] A. Jankowski, M. Jez, A. Swider, Investigation of non-linear dynamics
of crankshaft assembly, Journal of KONES. Internal Combustion
Engines 7 (1-2) (2000) 217–227.
[20] M. Jez˙, A. S´wider, Analiza drgan´ nieliniowych jednocylindrowego silnika
tłokowego, Journal of KONES 8 (3-4) (2001) 98–105, in Polish.
[21] A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a
dynamic model of crankshaft assembly with three degrees of freedom,
in: Methods and Models in Automation and Robotics (MMAR), 2015
20th International Conference on, IEEE, 2015, pp. 1038–1043.
[22] D. Berchowitz, I. Urieli, Stirling Cycle Engine Analysis, Adam Hilger
Ltd, Bristol, 1984.
[23] R. Shoureshi, Analysis and design of stirling engines for waste-heat
recovery, Ph.D. thesis, Massachusetts Institute of Technology (June
1981).
[24] G. Walter, Stirling Engines, Oxford University Press, New York, 1980.
[25] D. M. Berchowitz, Stirling cycle engine design and optimisation, Ph.D.
thesis (1986).
[26] M. Campos, J. Vargas, J. Ordonez, Thermodynamic optimization of a
stirling engine, Energy 44 (1) (2012) 902–910.
[27] S. Toghyani, A. Kasaeian, M. H. Ahmadi, Multi-objective optimization
of stirling engine using non-ideal adiabatic method, Energy Conversion
and Management 80 (2014) 54–62.
[28] S. Toghyani, A. Kasaeian, S. H. Hashemabadi, M. Salimi, Multi-objective optimization of gpu3 stirling engine using third order analysis,
Energy Conversion and Management 87 (2014) 521.529.
[29] M. Babaelahi, H. Sayyaadi, Simple-ii: A new numerical thermal model
for predicting thermal performance of stirling engines, Energy 69
(2014) 873.890.
[30] Y. Timoumi, I. Tlili, S. B. Nasrallah, Performance optimization of stirling
engines, Renewable Energy 33 (9) (2008) 2134.2144.
[31] Y. Timoumi, I. Tlili, S. B. Nasrallah, Design and performance optimization
of gpu-3 stirling engines, Energy 33 (7) (2008) 1100.1114.
[32] N. Parlak, A. Wagner, M. Elsner, H. S. Soyhan, Thermodynamic analysis
of a gamma type stirling engine in non-ideal adiabatic conditions,
Renewable Energy 34 (1) (2009) 266.273.
[33] M. Babaelahi, H. Sayyaadi, A new thermal model based on polytropic
numerical simulation of stirling engines, Applied Energy 141 (2015)
143.159.
[34] M. H. Ahmadi, M. A. Ahmadi, S. A. Sadatsakkak, M. Feidt, Connectionist
intelligent model estimates output power and torque of stirling
engine, Renewable and Sustainable Energy Reviews 50 (2015) 871.
883.
[35] F. Sala, C. Invernizzi, D. Garcia, M.-A. Gonzalez, J.-I. Prieto, Preliminary
design criteria of stirling engines taking into account real gas
effects, Applied Thermal Engineering 89 (2015) 978.989.
[36] C. J. Paul, A. Engeda, Modeling a complete stirling engine, Energy 80
(2015) 85.97.
[37] P. Alcan, A. Balin, H. BaCsl.gil, Fuzzy multicriteria selection among cogeneration
systems: a real case application, Energy and Buildings 67
(2013) 624.634.
[38] C.-H. Cheng, H.-S. Yang, Theoretical model for predicting thermodynamic
behavior of thermal-lag stirling engine, Energy 49 (2013) 218.
228.
[39] J. A. Araoz, M. Salomon, L. Alejo, T. H. Fransson, Non-ideal stirling
engine thermodynamic model suitable for the integration into overall
energy systems, Applied Thermal Engineering 73 (1) (2014) 205.221.
[40] F. Sala, C. M. Invernizzi, Low temperature stirling engines pressurised
with real gas effects, Energy 75 (2014) 225.236.
[41] F. Formosa, G. Despesse, Analytical model for stirling cycle machine
design, Energy Conversion and Management 51 (10) (2010) 1855.
1863.
[42] A. J. Organ, The regenerator and the Stirling engine, Mechanical Engineering
Publications Limited, London, 1997.
[43] S. .Zmudzki, Silniki Stirlinga [Stirling Engines],Wydawnictwa Naukowo-
Techniczne, Warsaw, 1993.
[44] R. Gheith, F. Aloui, S. B. Nasrallah, Determination of adequate regenerator
for a gamma-type stirling engine, Applied Energy 139 (2015)
272.280.
2014).
URL http://www.consilium.europa.eu/
[2] B. Knopf, P. Nahmmacher, E. Schmid, The european renewable energy
target for 2030–an impact assessment of the electricity sector,
Energy policy 85 (2015) 50–60.
[3] A. Calvo-Silvosa, S. I. Antelo, I. Soares, et al., The european lowcarbon
mix for 2030: The role of renewable energy sources in an
environmentally and socially efficient approach, Renewable and Sustainable
Energy Reviews 48 (2015) 49–61.
[4] A. Chmielewski, R. Gumi´ nski, S. Radkowski, P. Szulim, Aspekty wsparcia
i rozwoju mikrokogeneracji rozproszonej na terenie polski, Rynek
energii 5 (114) (2014) 94–101, in Polish.
[5] Directive 2004/8/EC of the European Parliament and of the council of
11 February 2004 on the promotion of cogeneration based on a useful
heat demand in the internal energy market and amending Directive
92/42/EC.
[6] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal
combustion engine fuelled by natural gas operating in distributed generation,
Energy Procedia 14 (2012) 1478–1483.
[7] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,
Variant analysis of the structure and parameters of sofc hybrid systems,
in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,
2013, pp. 306–312.
[8] A. Chmielewski, R. Gumin´ski, K. Lubikowski, J. Ma˛czak, P. Szulim,
Badania układu mikrokogeneracyjnego z silnikiem stirlinga. cze˛s´c´ i [research
on the micro cogeneration system with stirling engine. part i],
Rynek Energii 119 (4) (2015) 42–48, in Polish.
[9] A. Chmielewski, R. Guminski, S. Radkowski, P. Szulim, Experimental
research and application possibilities of microcogeneration system
with stirling engine, Journal of Power Technologies 95 (5) (2015) 14–
22.
[10] A. Chmielewski, R. Gumin´ski, K. Lubikowski, J. Ma˛czak, P. Szulim,
Badania układu mikrokogeneracyjnego z silnikiem stirlinga. Cze˛s´c´ ii
[research on the micro cogeneration system with stirling engine. Part
ii], Rynek Energii 120 (5) (2015) 53–60, in Polish.
[11] T. Li, D. Tang, Z. Li, J. Du, T. Zhou, Y. Jia, Development and test of a
stirling engine driven by waste gases for the micro-chp system, Applied
thermal engineering 33 (2012) 119–123.
[12] C.-H. Cheng, H.-S. Yang, B.-Y. Jhou, Y.-C. Chen, Y.-J. Wang, Dynamic
simulation of thermal-lag stirling engines, Applied energy 108 (2013)
466–476.
[13] C.-H. Cheng, H.-S. Yang, L. Keong, Theoretical and experimental
study of a 300-w beta-type stirling engine, Energy 59 (2013) 590–599.
[14] M. Reséndiz-Antonio, M. Santillán, On the dynamical vs. thermodynamical
performance of a -type stirling engine, Physica A: Statistical
Mechanics and its Applications 409 (2014) 162–174.
[15] G. Xiao, C. Chen, B. Shi, K. Cen, M. Ni, Experimental study on heat transfer of oscillating flow of a tubular stirling engine heater, International
Journal of Heat and Mass Transfer 71 (2014) 1–7.
[16] L. Scollo, P. Valdez, S. Santamarina, M. Chini, J. Baron, Twin cylinder
alpha stirling engine combined model and prototype redesign, International
Journal of Hydrogen Energy 38 (4) (2013) 1988–1996.
[17] C.-H. Cheng, Y.-J. Yu, Dynamic simulation of a beta-type stirling engine
with cam-drive mechanism via the combination of the thermodynamic
and dynamic models, Renewable energy 36 (2) (2011) 714–725.
[18] C.-H. Cheng, Y.-J. Yu, Combining dynamic and thermodynamic models
for dynamic simulation of a beta-type stirling engine with rhombic-drive
mechanism, Renewable energy 37 (1) (2012) 161–173.
[19] A. Jankowski, M. Jez, A. Swider, Investigation of non-linear dynamics
of crankshaft assembly, Journal of KONES. Internal Combustion
Engines 7 (1-2) (2000) 217–227.
[20] M. Jez˙, A. S´wider, Analiza drgan´ nieliniowych jednocylindrowego silnika
tłokowego, Journal of KONES 8 (3-4) (2001) 98–105, in Polish.
[21] A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a
dynamic model of crankshaft assembly with three degrees of freedom,
in: Methods and Models in Automation and Robotics (MMAR), 2015
20th International Conference on, IEEE, 2015, pp. 1038–1043.
[22] D. Berchowitz, I. Urieli, Stirling Cycle Engine Analysis, Adam Hilger
Ltd, Bristol, 1984.
[23] R. Shoureshi, Analysis and design of stirling engines for waste-heat
recovery, Ph.D. thesis, Massachusetts Institute of Technology (June
1981).
[24] G. Walter, Stirling Engines, Oxford University Press, New York, 1980.
[25] D. M. Berchowitz, Stirling cycle engine design and optimisation, Ph.D.
thesis (1986).
[26] M. Campos, J. Vargas, J. Ordonez, Thermodynamic optimization of a
stirling engine, Energy 44 (1) (2012) 902–910.
[27] S. Toghyani, A. Kasaeian, M. H. Ahmadi, Multi-objective optimization
of stirling engine using non-ideal adiabatic method, Energy Conversion
and Management 80 (2014) 54–62.
[28] S. Toghyani, A. Kasaeian, S. H. Hashemabadi, M. Salimi, Multi-objective optimization of gpu3 stirling engine using third order analysis,
Energy Conversion and Management 87 (2014) 521.529.
[29] M. Babaelahi, H. Sayyaadi, Simple-ii: A new numerical thermal model
for predicting thermal performance of stirling engines, Energy 69
(2014) 873.890.
[30] Y. Timoumi, I. Tlili, S. B. Nasrallah, Performance optimization of stirling
engines, Renewable Energy 33 (9) (2008) 2134.2144.
[31] Y. Timoumi, I. Tlili, S. B. Nasrallah, Design and performance optimization
of gpu-3 stirling engines, Energy 33 (7) (2008) 1100.1114.
[32] N. Parlak, A. Wagner, M. Elsner, H. S. Soyhan, Thermodynamic analysis
of a gamma type stirling engine in non-ideal adiabatic conditions,
Renewable Energy 34 (1) (2009) 266.273.
[33] M. Babaelahi, H. Sayyaadi, A new thermal model based on polytropic
numerical simulation of stirling engines, Applied Energy 141 (2015)
143.159.
[34] M. H. Ahmadi, M. A. Ahmadi, S. A. Sadatsakkak, M. Feidt, Connectionist
intelligent model estimates output power and torque of stirling
engine, Renewable and Sustainable Energy Reviews 50 (2015) 871.
883.
[35] F. Sala, C. Invernizzi, D. Garcia, M.-A. Gonzalez, J.-I. Prieto, Preliminary
design criteria of stirling engines taking into account real gas
effects, Applied Thermal Engineering 89 (2015) 978.989.
[36] C. J. Paul, A. Engeda, Modeling a complete stirling engine, Energy 80
(2015) 85.97.
[37] P. Alcan, A. Balin, H. BaCsl.gil, Fuzzy multicriteria selection among cogeneration
systems: a real case application, Energy and Buildings 67
(2013) 624.634.
[38] C.-H. Cheng, H.-S. Yang, Theoretical model for predicting thermodynamic
behavior of thermal-lag stirling engine, Energy 49 (2013) 218.
228.
[39] J. A. Araoz, M. Salomon, L. Alejo, T. H. Fransson, Non-ideal stirling
engine thermodynamic model suitable for the integration into overall
energy systems, Applied Thermal Engineering 73 (1) (2014) 205.221.
[40] F. Sala, C. M. Invernizzi, Low temperature stirling engines pressurised
with real gas effects, Energy 75 (2014) 225.236.
[41] F. Formosa, G. Despesse, Analytical model for stirling cycle machine
design, Energy Conversion and Management 51 (10) (2010) 1855.
1863.
[42] A. J. Organ, The regenerator and the Stirling engine, Mechanical Engineering
Publications Limited, London, 1997.
[43] S. .Zmudzki, Silniki Stirlinga [Stirling Engines],Wydawnictwa Naukowo-
Techniczne, Warsaw, 1993.
[44] R. Gheith, F. Aloui, S. B. Nasrallah, Determination of adequate regenerator
for a gamma-type stirling engine, Applied Energy 139 (2015)
272.280.
Published
2016-12-04
How to Cite
CHMIELEWSKI, Adrian Albin et al.
Model-based research on a micro cogeneration system with Stirling engine.
Journal of Power Technologies, [S.l.], v. 96, n. 4, p. 295--305, dec. 2016.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/737>. Date accessed: 24 dec. 2024.
Issue
Section
RDPE 2015 Conference
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).