Thermodynamic analysis and profitability study of a power unit with an added CO2 capture plant
Abstract
Concerns over greenhouse gas emissions are driving a requirement for newly built coal power units to satisfythe so-called “capture ready” conditions. This paper presents the a thermo-economic analysis supplemented bya cost evaluation of a power unit for ultra-supercritical parameters expanded by an amine-based CO2 captureplant. The analysis was performed with the use of an integrated package containing the IPSEpro, MATLAB andRevenue Requirement Method implemented in MOExcel. The 0D model of a post combustion capture installationwas developed based on complex CFD calculations of the absorber and stripper. A number of CFD simulationswere conducted to create a large database, which was then utilized to develop suitable correlations describing theprocessThermodynamic and economic calculations were performed in respect of a power plant coupled with a CO2separation unit for a varying ratio of amine solvent to the exhaust gas stream (L/G). A local minimum for reboilerheat duty was found for L/G3.5 revealing the optimal post combustion capture configuration. It was observed thatcomplementing the power unit with a post-combustion capture (PCC) installation causes a slight increase in theinvestment costs due to the drop in efficiency, but more important is the rise in total cost due to the investmentassociated with the CO2 capture plant. It was found that about 14 years is required to compensate the investmentcost of the PCC installation.References
[1] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw,
Post-combustion CO2 capture with chemical absorption: a
state-of-the-art review, Chemical Engineering Research and
Design 89 (9) (2011) 1609–1624.
[2] D. Y. Leung, G. Caramanna, M. M. Maroto-Valer, An overview
of current status of carbon dioxide capture and storage technologies,
Renewable and Sustainable Energy Reviews 39
(2014) 426–443.
[3] Y. Artanto, J. Jansen, P. Pearson, T. Do, A. Cottrell, E. Meuleman,
P. Feron, Performance of mea and amine-blends in the
csiro pcc pilot plant at loy yang power in australia, Fuel 101
(2012) 264–275.
[4] J. Marion, F. Kluger, M. Sell, A. Skea, Advanced Ultra-
Supercritical Steam Power Plants, in: Proc. POWER-GEN
Asia KLCC, Kuala Lumpur, Malaysia, 2014.
[5] D. Asendrych, P. Niegodajew, S. Drobniak, CFD modelling of
CO2 capture in a packed bed by chemical absorption, Chemical
and Process Engineering 34 (2) (2013) 269–282.
[6] K. Stepczynska, L. Kowalczyk, S. Dykas, W. Elsner, Calculation
of a 900 mw conceptual 700/720oc coal-fired power unit
with an auxiliary extraction-backpressure turbine, Journal of
power technologies 92 (4) (2012) 266.
[7] Ł. Kowalczyk, W. Elsner, Comparative analysis of optimisation
methods applied to thermal cycle of a coal fired power plant,
Archives of Thermodynamics 34 (4) (2013) 175–186.
[8] L. Kowalczyk, W. Elsner, P. Niegodajew, The application of
non-gradient optimization methods to new concept of power
plant, Proc. 6th IC-EpsMsO, Athens, 8-11 July, 2015.
[9] A. Aroonwilas, A. Veawab, Integration of CO2 capture unit
using single-and blended-amines into supercritical coal-fired
power plants: implications for emission and energy management,
International Journal of Greenhouse Gas Control 1 (2)
(2007) 143–150.
[10] U. Desideri, A. Paolucci, Performance modelling of a carbon
dioxide removal system for power plants, Energy Conversion
and Management 40 (18) (1999) 1899–1915.
[11] R.D. Brasington, Integration and operation of post-combustion
capture system on coal-fired power generation: load following
and peak power, MSc thesis, Massachusetts Institute of
Technology, 2012.
[12] J. Marion, N. Nsakala, C. Bozzuto, G. Liljedahl, M. Palkes,
D. Vogel, et al., Engineering feasibility of CO2 capture on an
existing US coal-fired power plant, in: 26th Int. Conf. Coal Util.
Fuel Syst., Clearwater, Florida, 2001.
[13] T. Sanpasertparnich, R. Idem, I. Bolea, P. Tontiwachwuthikul,
et al., Integration of post-combustion capture and storage into
a pulverized coal-fired power plant, International Journal of
Greenhouse Gas Control 4 (3) (2010) 499–510.
[14] A. Lawal, M. Wang, P. Stephenson, O. Obi, Demonstrating
full-scale post-combustion CO2 capture for coal-fired power
plants through dynamic modelling and simulation, Fuel 101
(2012) 115–128.
[15] J. Kotowicz, P. H. Lukowicz, Influence of chosen parameters
on economic effectiveness of a supercritical combined heat
and power plant, Journal of Power Technologies 93 (5) (2013)
323.
[16] K. Stepczynska, K. Bochon, H. Lukowicz, S. Dykas, Operation
of conceptual a-usc power unit integrated with co2 capture installation
at part load, Journal of Power Technologies 93 (5)
(2013) 383.
[17] P. G. Cifre, K. Brechtel, S. Hoch, H. García, N. Asprion,
H. Hasse, G. Scheffknecht, Integration of a chemical process
model in a power plant modelling tool for the simulation of an
amine based CO2 scrubber, Fuel 88 (12) (2009) 2481–2488.
[18] J. Kotowicz, M. A. Brzeczek, The influence of CO2 capture
and compression on the economic characteristics of a combined
cycle power plant, Journal of Power Technologies 93 (5)
(2013) 314.
[19] W. Elsner, S. Drobniak, M. Marek, L. Kowalczyk, Sprawozdanie
merytoryczna za okres 01.05.2014-30.04.2015, Etap
16.1.IV1.1e, Udzial w syntezie wynikow, 2015.
[20] W. Elsner, Ł. Kowalczyk, P. Niegodajew, S. Drobniak, Thermodynamic
analysis of a thermal cycle of supercritical power
plant, Mechanics and Mechanical Engineering 15 (3) (2011)
217–225.
[21] S. Dykas, S. Rulik, K. Ste˛pczyn´ska, et al., Thermodynamic
and economic analysis of a 900 mw ultra-supercritical power
unit, Archives of thermodynamics 32 (3) (2011) 231–244.
[22] S. Kjaer, F. Drinhaus, A modified double reheat cycle, in:
ASME 2010 Power Conference, American Society of Mechanical
Engineers, 2010, pp. 285–293.
[23] M. Bazmi, S. Hashemabadi, M. Bayat, Extrudate trilobe catalysts
and loading effects on pressure drop and dynamic liquid
holdup in porous media of trickle bed reactors, Transport in
porous media 99 (3) (2013) 535–553.
[24] R. Billet, Packed Towers, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, FRG, 1995.
[25] P. Niegodajew, D. Asendrych, S. Drobniak, Numerical analysis
of co2 capture efficiency in post combustion ccs technology in
terms of varying flow conditions, Archives of Thermodynamics
34 (4) (2013) 123–136.
[26] P. Niegodajew, D. Asendrych, S. Drobniak, W. Elsner, Numerical
modelling of CO2 desorption process coupled with phase
transformation and heat transfer in ccs installation, Journal of
Power Technologies 93 (5) (2013) 354–362.
[27] R. Notz, H. P. Mangalapally, H. Hasse, Post combustion CO2
capture by reactive absorption: pilot plant description and results
of systematic studies with mea, International Journal of
Greenhouse Gas Control 6 (2012) 84–112.
[28] M. Wang, A. S. Joel, C. Ramshaw, D. Eimer, N. M. Musa,
Process intensification for post-combustion co 2 capture with
chemical absorption: a critical review, Applied Energy 158
(2015) 275–291.
[29] A. Krótki, L. Wie˛cław-Solny, A. Tatarczuk, A. Wilk, D. S´ piewak,
Laboratory research studies of co2 absorption with the use of
30% aqueous monoethanolamine solution, Archiwum Spalania
12 (4) (2012) 195–203.
[30] H. Thee, Y. A. Suryaputradinata, K. A. Mumford, K. H. Smith,
G. da Silva, S. E. Kentish, G. W. Stevens, A kinetic and
process modeling study of co 2 capture with mea-promoted
potassium carbonate solutions, Chemical engineering journal
210 (2012) 271–279.
[31] T. L. Sønderby, K. B. Carlsen, P. L. Fosbøl, L. G. Kiørboe,
N. von Solms, A new pilot absorber for CO2 capture from flue
gases: measuring and modelling capture with mea solution,
International Journal of Greenhouse Gas Control 12 (2013)
181–192.
[32] A. Kothandaraman, Carbon Dioxide Capture by Chemical Absorption,
A Solvent Comparison Study, PhD Thesis, Massachusetts
Institute of Technology, 2010.
[33] P. Niegodajew, L. Kowalczyk, W. Elsner, Thermo-economic
optimisation method of modern power plant using complex algorithms
combined with revenue requirement method, Procee
6th IC-EpsMsO, Athens, 8-11 July. (2015.
[34] M. Finkenrath, Cost and performance of carbon dioxide capture
from power generation, 2011.
[35] PowerTech, Reference Power Plant North Rhine-Westphalia.
Technical report, VGB PowerTech e.V. (project management),
2004.
[36] J. Kotowicz, L. Bartela, A. Skorek-Osikowska, Analizy bloku
kogeneracyjnego na parametry nadkrytyczne zintegrowanego
z instalacja separacji CO2, Wydawnictwo Politechniki Slaskiej,
Gliwice, 2014.
Post-combustion CO2 capture with chemical absorption: a
state-of-the-art review, Chemical Engineering Research and
Design 89 (9) (2011) 1609–1624.
[2] D. Y. Leung, G. Caramanna, M. M. Maroto-Valer, An overview
of current status of carbon dioxide capture and storage technologies,
Renewable and Sustainable Energy Reviews 39
(2014) 426–443.
[3] Y. Artanto, J. Jansen, P. Pearson, T. Do, A. Cottrell, E. Meuleman,
P. Feron, Performance of mea and amine-blends in the
csiro pcc pilot plant at loy yang power in australia, Fuel 101
(2012) 264–275.
[4] J. Marion, F. Kluger, M. Sell, A. Skea, Advanced Ultra-
Supercritical Steam Power Plants, in: Proc. POWER-GEN
Asia KLCC, Kuala Lumpur, Malaysia, 2014.
[5] D. Asendrych, P. Niegodajew, S. Drobniak, CFD modelling of
CO2 capture in a packed bed by chemical absorption, Chemical
and Process Engineering 34 (2) (2013) 269–282.
[6] K. Stepczynska, L. Kowalczyk, S. Dykas, W. Elsner, Calculation
of a 900 mw conceptual 700/720oc coal-fired power unit
with an auxiliary extraction-backpressure turbine, Journal of
power technologies 92 (4) (2012) 266.
[7] Ł. Kowalczyk, W. Elsner, Comparative analysis of optimisation
methods applied to thermal cycle of a coal fired power plant,
Archives of Thermodynamics 34 (4) (2013) 175–186.
[8] L. Kowalczyk, W. Elsner, P. Niegodajew, The application of
non-gradient optimization methods to new concept of power
plant, Proc. 6th IC-EpsMsO, Athens, 8-11 July, 2015.
[9] A. Aroonwilas, A. Veawab, Integration of CO2 capture unit
using single-and blended-amines into supercritical coal-fired
power plants: implications for emission and energy management,
International Journal of Greenhouse Gas Control 1 (2)
(2007) 143–150.
[10] U. Desideri, A. Paolucci, Performance modelling of a carbon
dioxide removal system for power plants, Energy Conversion
and Management 40 (18) (1999) 1899–1915.
[11] R.D. Brasington, Integration and operation of post-combustion
capture system on coal-fired power generation: load following
and peak power, MSc thesis, Massachusetts Institute of
Technology, 2012.
[12] J. Marion, N. Nsakala, C. Bozzuto, G. Liljedahl, M. Palkes,
D. Vogel, et al., Engineering feasibility of CO2 capture on an
existing US coal-fired power plant, in: 26th Int. Conf. Coal Util.
Fuel Syst., Clearwater, Florida, 2001.
[13] T. Sanpasertparnich, R. Idem, I. Bolea, P. Tontiwachwuthikul,
et al., Integration of post-combustion capture and storage into
a pulverized coal-fired power plant, International Journal of
Greenhouse Gas Control 4 (3) (2010) 499–510.
[14] A. Lawal, M. Wang, P. Stephenson, O. Obi, Demonstrating
full-scale post-combustion CO2 capture for coal-fired power
plants through dynamic modelling and simulation, Fuel 101
(2012) 115–128.
[15] J. Kotowicz, P. H. Lukowicz, Influence of chosen parameters
on economic effectiveness of a supercritical combined heat
and power plant, Journal of Power Technologies 93 (5) (2013)
323.
[16] K. Stepczynska, K. Bochon, H. Lukowicz, S. Dykas, Operation
of conceptual a-usc power unit integrated with co2 capture installation
at part load, Journal of Power Technologies 93 (5)
(2013) 383.
[17] P. G. Cifre, K. Brechtel, S. Hoch, H. García, N. Asprion,
H. Hasse, G. Scheffknecht, Integration of a chemical process
model in a power plant modelling tool for the simulation of an
amine based CO2 scrubber, Fuel 88 (12) (2009) 2481–2488.
[18] J. Kotowicz, M. A. Brzeczek, The influence of CO2 capture
and compression on the economic characteristics of a combined
cycle power plant, Journal of Power Technologies 93 (5)
(2013) 314.
[19] W. Elsner, S. Drobniak, M. Marek, L. Kowalczyk, Sprawozdanie
merytoryczna za okres 01.05.2014-30.04.2015, Etap
16.1.IV1.1e, Udzial w syntezie wynikow, 2015.
[20] W. Elsner, Ł. Kowalczyk, P. Niegodajew, S. Drobniak, Thermodynamic
analysis of a thermal cycle of supercritical power
plant, Mechanics and Mechanical Engineering 15 (3) (2011)
217–225.
[21] S. Dykas, S. Rulik, K. Ste˛pczyn´ska, et al., Thermodynamic
and economic analysis of a 900 mw ultra-supercritical power
unit, Archives of thermodynamics 32 (3) (2011) 231–244.
[22] S. Kjaer, F. Drinhaus, A modified double reheat cycle, in:
ASME 2010 Power Conference, American Society of Mechanical
Engineers, 2010, pp. 285–293.
[23] M. Bazmi, S. Hashemabadi, M. Bayat, Extrudate trilobe catalysts
and loading effects on pressure drop and dynamic liquid
holdup in porous media of trickle bed reactors, Transport in
porous media 99 (3) (2013) 535–553.
[24] R. Billet, Packed Towers, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, FRG, 1995.
[25] P. Niegodajew, D. Asendrych, S. Drobniak, Numerical analysis
of co2 capture efficiency in post combustion ccs technology in
terms of varying flow conditions, Archives of Thermodynamics
34 (4) (2013) 123–136.
[26] P. Niegodajew, D. Asendrych, S. Drobniak, W. Elsner, Numerical
modelling of CO2 desorption process coupled with phase
transformation and heat transfer in ccs installation, Journal of
Power Technologies 93 (5) (2013) 354–362.
[27] R. Notz, H. P. Mangalapally, H. Hasse, Post combustion CO2
capture by reactive absorption: pilot plant description and results
of systematic studies with mea, International Journal of
Greenhouse Gas Control 6 (2012) 84–112.
[28] M. Wang, A. S. Joel, C. Ramshaw, D. Eimer, N. M. Musa,
Process intensification for post-combustion co 2 capture with
chemical absorption: a critical review, Applied Energy 158
(2015) 275–291.
[29] A. Krótki, L. Wie˛cław-Solny, A. Tatarczuk, A. Wilk, D. S´ piewak,
Laboratory research studies of co2 absorption with the use of
30% aqueous monoethanolamine solution, Archiwum Spalania
12 (4) (2012) 195–203.
[30] H. Thee, Y. A. Suryaputradinata, K. A. Mumford, K. H. Smith,
G. da Silva, S. E. Kentish, G. W. Stevens, A kinetic and
process modeling study of co 2 capture with mea-promoted
potassium carbonate solutions, Chemical engineering journal
210 (2012) 271–279.
[31] T. L. Sønderby, K. B. Carlsen, P. L. Fosbøl, L. G. Kiørboe,
N. von Solms, A new pilot absorber for CO2 capture from flue
gases: measuring and modelling capture with mea solution,
International Journal of Greenhouse Gas Control 12 (2013)
181–192.
[32] A. Kothandaraman, Carbon Dioxide Capture by Chemical Absorption,
A Solvent Comparison Study, PhD Thesis, Massachusetts
Institute of Technology, 2010.
[33] P. Niegodajew, L. Kowalczyk, W. Elsner, Thermo-economic
optimisation method of modern power plant using complex algorithms
combined with revenue requirement method, Procee
6th IC-EpsMsO, Athens, 8-11 July. (2015.
[34] M. Finkenrath, Cost and performance of carbon dioxide capture
from power generation, 2011.
[35] PowerTech, Reference Power Plant North Rhine-Westphalia.
Technical report, VGB PowerTech e.V. (project management),
2004.
[36] J. Kotowicz, L. Bartela, A. Skorek-Osikowska, Analizy bloku
kogeneracyjnego na parametry nadkrytyczne zintegrowanego
z instalacja separacji CO2, Wydawnictwo Politechniki Slaskiej,
Gliwice, 2014.
Published
2016-12-04
How to Cite
KOWALCZYK, Łukasz et al.
Thermodynamic analysis and profitability study of a power unit with an added CO2 capture plant.
Journal of Power Technologies, [S.l.], v. 96, n. 4, p. 276--284, dec. 2016.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/736>. Date accessed: 23 nov. 2024.
Issue
Section
RDPE 2015 Conference
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).