Effect of hydrogen addition on the catalytic combustion of fuel-lean carbon monoxide-air mixtures over platinum for micro-scale power generation applications
Abstract
The catalytic combustion of hydrogen and carbon monoxide over Pt/ -Al2O3 catalyst was investigated numerically forH2/CO/O2/N2 mixtures with overall lean equivalence ratios ' = 0.117 .. 0.167, H2:CO molar ratios 1:1.5 .. 1:6, a pressureof 0.6 MPa, and a surface temperature range from 600 to 770 K relevant for micro-scale turbines and large gas turbinebased power generation systems. Simulations were carried out with a two-dimensional CFD (Computational Fluid Dynamics)model in conjunction with detailed hetero-/homogeneous kinetic schemes and transports to explore the impact of hydrogenaddition on catalytic combustion of carbon monoxide. The detailed reaction mechanisms were constructed by implementingrecent updates to existing kinetic models. The simulation results indicated that the hydrogen addition kinetically promotes thecatalytic combustion of carbon monoxide at wall temperatures as low as 600 K, whereby the catalytic reactions of hydrogenare fully lit-off and the conversion of carbon monoxide is mixed transport/kinetically controlled. Such a low temperature limitis of great interest to idling and part-load operation in large gas turbines and to normal operation for recuperative micro-scaleturbine systems. Kinetic analysis demonstrated that the promoting impact of hydrogen addition on catalytic combustion of carbonmonoxide is attributed to the indirect effect of hydrogen reactions on the surface species coverage, while direct couplingsteps between hydrogen and carbon monoxide are of relatively minor importance. The added hydrogen inhibits the catalyticoxidation of carbon monoxide for wall temperatures below 520 K, which are well below the minimum inlet temperatures ofreactants in micro-scale turbine based power generation systems.References
[1] A. C. Fernandez-Pello, Micropower generation using combustion: Issues
and approaches, Proceedings of the Combustion Institute 29 (1)
(2002) 883–899.
[2] D. C. Walther, J. Ahn, Advances and challenges in the development
of power-generation systems at small scales, Progress in Energy and
Combustion Science 37 (5) (2011) 583–610.
[3] A. Mehra, X. Zhang, A. A. Ayón, I. A. Waitz, M. A. Schmidt, C. M.
Spadaccini, A six-wafer combustion system for a silicon micro gas turbine
engine, Journal of Microelectromechanical Systems 9 (4) (2000)
517–527.
[4] C. M. Spadaccini, J. Peck, I. A. Waitz, Catalytic combustion systems
for microscale gas turbine engines, Journal of Engineering for Gas
Turbines and Power 129 (1) (2005) 49–60.
[5] C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, I. A. Waitz,
High power density silicon combustion systems for micro gas turbine
engines, Journal of Engineering for Gas Turbines and Power 125 (3)
(2003) 709–719.
[6] K. Isomura, M. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo,
S. Tanaka, Experimental verification of the feasibility of a 100 w class
micro-scale gas turbine at an impeller diameter of 10 mm, Journal of
Micromechanics and Microengineering 16 (9) (2006) 254–261.
[7] K. Isomura, S. Tanaka, S. Togo, H. Kanebako, M. Murayama, N. Saji,
F. Sato, M. Esashi, Development of micromachine gas turbine for
portable power generation, JSME International Journal Series B Fluids
and Thermal Engineering 47 (3) (2004) 495–464.
[8] A. H. Epstein, micro-electro-mechanical systems gas turbine engines,
Journal of Engineering for Gas Turbines and Power 126 (2) (2004)
205–226.
[9] T. Singh, R. Marsh, G. Min, Development and investigation of a noncatalytic
self-aspirating meso-scale premixed burner integrated thermoelectric
power generator, Energy Conversion and Management 117
(2016) 431–441.
[10] E. D. Tolmachoff, W. Allmon, C. M. Waits, Analysis of a high throughput
n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor
for portable power conversion, Applied Energy 128 (2014)
111–118.
[11] Z. Zhang, W. Yuan, J. Deng, Y. Tang, Z. Li, K. Tang, Methanol catalytic
micro-combustor with pervaporation-based methanol supply system,
Chemical Engineering Journal 283 (2016) 982–991.
[12] C. H. Leu, S. C. King, J. M. Huang, C. C. Chen, S. S. Tzeng, C. I. Lee,
W. C. Chang, C. C. Yang, Visible images of the catalytic combustion
of methanol in a micro-channel reactor, Chemical Engineering Journal
226 (2013) 201–208.
[13] A. Brambilla, M. Schultze, C. E. Frouzakis, J. Mantzaras, R. Bombach,
K. Boulouchos, An experimental and numerical investigation of premixed
syngas combustion dynamics in mesoscale channels with controlled
wall temperature profiles, Proceedings of the Combustion Institute
35 (3) (2015) 3429–3437.
[14] R. Sui, N. I. Prasianakis, J. Mantzaras, N. Mallya, J. Theile, D. Lagrange,
M. Friess, An experimental and numerical investigation of the
combustion and heat transfer characteristics of hydrogen-fueled catalytic
microreactors, Chemical Engineering Science 141 (2016) 214–
230.
[15] P. M. Allison, J. F. Driscoll, M. Ihme, Acoustic characterization of a
partially-premixed gas turbine model combustor: Syngas and hydrocarbon
fuel comparisons, Proceedings of the Combustion Institute
34 (2) (2013) 3145–3153.
[16] M. Gieras, T. Stankowski, Computational study of an aerodynamic flow
through a micro-turbine engine combustor, Journal of Power Technologies
92 (2) (2012) 68–79.
[17] S. K. Aggarwal, D. Bongiovanni, M. Santarelli, Extinction of laminar
diffusion flames burning the anodic syngas fuel from solid oxide fuel
cell, International Journal of Hydrogen Energy 40 (22) (2015) 7214–
7230.
[18] . Aydın, H. Nakajima, T. Kitahara, Current and temperature distributions
in-situ acquired by electrode-segmentation along a microtubular
solid oxide fuel cell operating with syngas, Journal of Power Sources
293 (2015) 1053–1061.
[19] Y. Zhang, W. Shen, H. Zhang, Y. Wu, J. Lu, Effects of inert dilution
on the propagation and extinction of lean premixed syngas/air flames,
Fuel 157 (2015) 115–121.
[20] W. Jerzak, M. Ku´znia, M. Zajemska, The effect of adding co2 to the
axis of natural gas combustion flames on co and nox concentrations in
the combustion chamber, Journal of Power Technologies 94 (3) (2014)
202–210.
[21] S. Morel, The afterburning of carbon monoxide in natural gas combustion
gases in the presence of catalytic ceramic coatings, Journal of
Power Technologies 92 (2) (2012) 109–114.
[22] A. Liu, B. Wang, W. Zeng, L. Chen, Experimental study of ch4 catalytic
combustion on different catalyst, Journal of Power Technologies 93 (3)
(2013) 142–148.
[23] A. Brambilla, C. E. Frouzakis, J. Mantzaras, R. Bombach, K. Boulouchos,
Flame dynamics in lean premixed co/h2/air combustion in a
mesoscale channel, Combustion and Flame 161 (5) (2014) 1268–
1281.
[24] A. J. Santis-Alvarez, M. Nabavi, N. Hild, D. Poulikakos, W. J. Stark,
A fast hybrid start-up process for thermally self-sustained catalytic nbutane
reforming in micro-sofc power plants, Energy & Environmental
Science 4 (8) (2011) 3041–3050.
[25] J. Thormann, L. Maier, P. Pfeifer, U. Kunz, O. Deutschmann, K. Schubert,
Steam reforming of hexadecane over a rh/ceo2 catalyst in microchannels:
Experimental and numerical investigation, International
Journal of Hydrogen Energy 34 (12) (2009) 5108–5120.
[26] G. D. Stefanidis, D. G. Vlachos, N. S. Kaisare, M. Maestri, Methane
steam reforming at microscales: Operation strategies for variable
power output at millisecond contact times, AIChE Journal 55 (1) (2009)
180–191.
[27] A. B. Mhadeshwar, D. G. Vlachos, Hierarchical multiscale mechanism
development for methane partial oxidation and reforming and for
thermal decomposition of oxygenates on rh, The Journal of Physical
Chemistry B 109 (35) (2005) 16819–16835.
[28] A. B. Mhadeshwar, D. G. Vlachos, Is the water-gas shift reaction on pt
simple?: Computer-aided microkinetic model reduction, lumped rate
expression, and rate-determining step, Catalysis Today 105 (1) (2005)
162–172.
[29] A. B. Mhadeshwar, D. G. Vlachos, Microkinetic modeling for waterpromoted
co oxidation, water-gas shift, and preferential oxidation of co
on pt, The Journal of Physical Chemistry B 108 (39) (2004) 15246–
15258.
[30] M. Schultze, J. Mantzaras, F. Grygier, R. Bombach, Hetero-
/homogeneous combustion of syngas mixtures over platinum at fuelrich
stoichiometries and pressures up to 14 bar, Proceedings of the
Combustion Institute 35 (2) (2015) 2223–2231.
[31] X. Zheng, J. Mantzaras, R. Bombach, Kinetic interactions between hydrogen
and carbon monoxide oxidation over platinum, Combustion and
Flame 161 (1) (2014) 332–346.
[32] J. Mantzaras, Catalytic combustion of syngas, Combustion Science
and Technology 180 (6) (2008) 1137–1168.
[33] M. Sun, E. B. Croiset, R. R. Hudgins, P. L. Silveston, M. Menzinger,
Steady-state multiplicity and superadiabatic extinction waves in the oxidation
of co/h2 mixtures over a pt/al2o3-coated monolith, Industrial &
Engineering Chemistry Research 42 (1) (2003) 37–45.
[34] J. A. Federici, D. G. Vlachos, Experimental studies on syngas catalytic
combustion on pt/al2o3 in a microreactor, Combustion and Flame
158 (12) (2011) 2540–2543.
[35] Y. Ghermay, J. Mantzaras, R. Bombach, Experimental and numerical
investigation of hetero-/homogeneous combustion of co/h2/o2/n2
mixtures over platinum at pressures up to 5 bar, Proceedings of the
Combustion Institute 33 (2) (2011) 1827–1835.
[36] S. Eriksson, M. Wolf, A. Schneider, J. Mantzaras, F. Raimondi,
M. Boutonnet, S. Järås, Fuel-rich catalytic combustion of methane in
zero emissions power generation processes, Catalysis Today 117 (4)
(2006) 447–453.
[37] S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf, S. JärÅs, Experimental
and numerical investigation of supported rhodium catalysts for
partial oxidation of methane in exhaust gas diluted reaction mixtures,
Chemical Engineering Science 62 (15) (2007) 3991–4011.
[38] A. Schneider, J. Mantzaras, P. Jansohn, Experimental and numerical
investigation of the catalytic partial oxidation of ch4/o2 mixtures diluted
with h2o and co2 in a short contact time reactor, Chemical Engineering
Science 61 (14) (2006) 4634–4649.
[39] J. Duan, L. Sun, G. Wang, F. Wu, Nonlinear modeling of regenerative
cycle micro gas turbine, Energy 91 (2015) 168–175.
[40] FLUENT, Fluent 6.3 user’s guide, Tech. rep., Fluent Inc., Lebanon,
New Hampshire, USA (2006).
[41] J. Mantzaras, C. Appel, P. Benz, U. Dogwiler, Numerical modelling
of turbulent catalytically stabilized channel flow combustion, Catalysis
Today 59 (1-2) (2000) 3–17.
[42] J. Mantzaras, P. Benz, An asymptotic and numerical investigation of
homogeneous ignition in catalytically stabilized channel flow combustion,
Combustion and Flame 119 (4) (1999) 455–472.
[43] J. Mantzaras, C. Appel, Effects of finite rate heterogeneous kinetics on
homogeneous ignition in catalytically stabilized channel flow combustion,
Combustion and Flame 130 (4) (2002) 336–351.
[44] D. G. Norton, D. G. Vlachos, Combustion characteristics and flame stability
at the microscale: a cfd study of premixed methane/air mixtures,
Chemical Engineering Science 58 (21) (2003) 4871–4882.
[45] D. G. Norton, D. G. Vlachos, A cfd study of propane/air microflame
stability, Combustion and Flame 138 (1-2) (2004) 97–107.
[46] O. Deutschmann, L. Maier, U. Riedel, A. H. Stroeman, R. W. Dibble,
Hydrogen assisted catalytic combustion of methane on platinum,
Catalysis Today 59 (1-2) (2000) 141–150.
[47] C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli,
B. Hemmerling, A. Stampanoni, An experimental and numerical
investigation of homogeneous ignition in catalytically stabilized combustion
of hydrogen/air mixtures over platinum, Combustion and Flame
128 (4) (2002) 340–368.
[48] M. Schultze, J. Mantzaras, Hetero-/homogeneous combustion of hydrogen/
air mixtures over platinum: Fuel-lean versus fuel-rich combustion
modes, International Journal of Hydrogen Energy 38 (25) (2013)
10654–10670.
[49] J. Koop, O. Deutschmann, Detailed surface reaction mechanism for ptcatalyzed
abatement of automotive exhaust gases, Applied Catalysis
B: Environmental 91 (1-2) (2009) 47–58.
[50] Y. Ghermay, J. Mantzaras, R. Bombach, Effects of hydrogen preconversion
on the homogeneous ignition of fuel-lean h2/o2/n2/co2 mixtures
over platinum at moderate pressures, Combustion and Flame
157 (10) (2010) 1942–1958.
[51] Y. Ghermay, J. Mantzaras, R. Bombach, K. Boulouchos, Homogeneous
combustion of fuel-lean h2/o2/n2 mixtures over platinum at elevated
pressures and preheats, Combustion and Flame 158 (8) (2011)
1491–1506.
[52] U. Dogwiler, P. Benz, J. Mantzaras, Two-dimensional modelling for catalytically
stabilized combustion of a lean methane-air mixture with elementary
homogeneous and heterogeneous chemical reactions, Combustion
and Flame 116 (1-2) (1999) 243–258.
[53] J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, J. J. S. Jr., A comprehensive
kinetic mechanism for co, ch2o, and ch3oh combustion,
International Journal of Chemical Kinetics 39 (3) (2007) 109–136.
[54] M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, S. J. Klippenstein, Comprehensive
h2/o2 kinetic model for high-pressure combustion, International
Journal of Chemical Kinetics 44 (7) (2012) 444–474.
[55] R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, Chemkin-iii: A fortran
chemical kinetics package for the analysis of gas-phase chemical and
plasma kinetics, Tech. Rep. Report No. SAND96-8216, Sandia National
Laboratories, Livermore, CA (USA) (1996).
[56] M. E. Coltrin, R. J. Kee, F. M. Rupley, E. Meeks, Surface chemkin-iii:
A fortran package for analyzing heterogeneous chemical kinetics at a
solid-surface - gas-phase interface, Tech. Rep. Report No. SAND96-
8217, Sandia National Laboratories, Livermore, CA (USA) (1996).
[57] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, H. K.
Moffat, A fortran computer code package for the evaluation of gasphase,
multicomponent transport properties, Tech. Rep. Report No.
SAND86-8246B, Sandia National Laboratories, Livermore, CA (USA)
(1998).
[58] C. H. Kuo, P. D. Ronney, Numerical modeling of non-adiabatic heatrecirculating
combustors, Proceedings of the Combustion Institute
31 (2) (2007) 3277–3284.
[59] A. K. Chaniotis, D. Poulikakos, Modeling and optimization of catalytic
partial oxidation methane reforming for fuel cells, Journal of Power
Sources 142 (1-2) (2005) 184–193.
[60] E. Meeks, H. K. Moffat, J. F. Grcar, R. J. Kee, Aurora: A fortran program
for modeling well stirred plasma and thermal reactors with gas
and surface reactions, Tech. Rep. Report No. SAND96-8218, Sandia
National Laboratories, Livermore, CA (USA) (1996).
and approaches, Proceedings of the Combustion Institute 29 (1)
(2002) 883–899.
[2] D. C. Walther, J. Ahn, Advances and challenges in the development
of power-generation systems at small scales, Progress in Energy and
Combustion Science 37 (5) (2011) 583–610.
[3] A. Mehra, X. Zhang, A. A. Ayón, I. A. Waitz, M. A. Schmidt, C. M.
Spadaccini, A six-wafer combustion system for a silicon micro gas turbine
engine, Journal of Microelectromechanical Systems 9 (4) (2000)
517–527.
[4] C. M. Spadaccini, J. Peck, I. A. Waitz, Catalytic combustion systems
for microscale gas turbine engines, Journal of Engineering for Gas
Turbines and Power 129 (1) (2005) 49–60.
[5] C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, I. A. Waitz,
High power density silicon combustion systems for micro gas turbine
engines, Journal of Engineering for Gas Turbines and Power 125 (3)
(2003) 709–719.
[6] K. Isomura, M. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo,
S. Tanaka, Experimental verification of the feasibility of a 100 w class
micro-scale gas turbine at an impeller diameter of 10 mm, Journal of
Micromechanics and Microengineering 16 (9) (2006) 254–261.
[7] K. Isomura, S. Tanaka, S. Togo, H. Kanebako, M. Murayama, N. Saji,
F. Sato, M. Esashi, Development of micromachine gas turbine for
portable power generation, JSME International Journal Series B Fluids
and Thermal Engineering 47 (3) (2004) 495–464.
[8] A. H. Epstein, micro-electro-mechanical systems gas turbine engines,
Journal of Engineering for Gas Turbines and Power 126 (2) (2004)
205–226.
[9] T. Singh, R. Marsh, G. Min, Development and investigation of a noncatalytic
self-aspirating meso-scale premixed burner integrated thermoelectric
power generator, Energy Conversion and Management 117
(2016) 431–441.
[10] E. D. Tolmachoff, W. Allmon, C. M. Waits, Analysis of a high throughput
n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor
for portable power conversion, Applied Energy 128 (2014)
111–118.
[11] Z. Zhang, W. Yuan, J. Deng, Y. Tang, Z. Li, K. Tang, Methanol catalytic
micro-combustor with pervaporation-based methanol supply system,
Chemical Engineering Journal 283 (2016) 982–991.
[12] C. H. Leu, S. C. King, J. M. Huang, C. C. Chen, S. S. Tzeng, C. I. Lee,
W. C. Chang, C. C. Yang, Visible images of the catalytic combustion
of methanol in a micro-channel reactor, Chemical Engineering Journal
226 (2013) 201–208.
[13] A. Brambilla, M. Schultze, C. E. Frouzakis, J. Mantzaras, R. Bombach,
K. Boulouchos, An experimental and numerical investigation of premixed
syngas combustion dynamics in mesoscale channels with controlled
wall temperature profiles, Proceedings of the Combustion Institute
35 (3) (2015) 3429–3437.
[14] R. Sui, N. I. Prasianakis, J. Mantzaras, N. Mallya, J. Theile, D. Lagrange,
M. Friess, An experimental and numerical investigation of the
combustion and heat transfer characteristics of hydrogen-fueled catalytic
microreactors, Chemical Engineering Science 141 (2016) 214–
230.
[15] P. M. Allison, J. F. Driscoll, M. Ihme, Acoustic characterization of a
partially-premixed gas turbine model combustor: Syngas and hydrocarbon
fuel comparisons, Proceedings of the Combustion Institute
34 (2) (2013) 3145–3153.
[16] M. Gieras, T. Stankowski, Computational study of an aerodynamic flow
through a micro-turbine engine combustor, Journal of Power Technologies
92 (2) (2012) 68–79.
[17] S. K. Aggarwal, D. Bongiovanni, M. Santarelli, Extinction of laminar
diffusion flames burning the anodic syngas fuel from solid oxide fuel
cell, International Journal of Hydrogen Energy 40 (22) (2015) 7214–
7230.
[18] . Aydın, H. Nakajima, T. Kitahara, Current and temperature distributions
in-situ acquired by electrode-segmentation along a microtubular
solid oxide fuel cell operating with syngas, Journal of Power Sources
293 (2015) 1053–1061.
[19] Y. Zhang, W. Shen, H. Zhang, Y. Wu, J. Lu, Effects of inert dilution
on the propagation and extinction of lean premixed syngas/air flames,
Fuel 157 (2015) 115–121.
[20] W. Jerzak, M. Ku´znia, M. Zajemska, The effect of adding co2 to the
axis of natural gas combustion flames on co and nox concentrations in
the combustion chamber, Journal of Power Technologies 94 (3) (2014)
202–210.
[21] S. Morel, The afterburning of carbon monoxide in natural gas combustion
gases in the presence of catalytic ceramic coatings, Journal of
Power Technologies 92 (2) (2012) 109–114.
[22] A. Liu, B. Wang, W. Zeng, L. Chen, Experimental study of ch4 catalytic
combustion on different catalyst, Journal of Power Technologies 93 (3)
(2013) 142–148.
[23] A. Brambilla, C. E. Frouzakis, J. Mantzaras, R. Bombach, K. Boulouchos,
Flame dynamics in lean premixed co/h2/air combustion in a
mesoscale channel, Combustion and Flame 161 (5) (2014) 1268–
1281.
[24] A. J. Santis-Alvarez, M. Nabavi, N. Hild, D. Poulikakos, W. J. Stark,
A fast hybrid start-up process for thermally self-sustained catalytic nbutane
reforming in micro-sofc power plants, Energy & Environmental
Science 4 (8) (2011) 3041–3050.
[25] J. Thormann, L. Maier, P. Pfeifer, U. Kunz, O. Deutschmann, K. Schubert,
Steam reforming of hexadecane over a rh/ceo2 catalyst in microchannels:
Experimental and numerical investigation, International
Journal of Hydrogen Energy 34 (12) (2009) 5108–5120.
[26] G. D. Stefanidis, D. G. Vlachos, N. S. Kaisare, M. Maestri, Methane
steam reforming at microscales: Operation strategies for variable
power output at millisecond contact times, AIChE Journal 55 (1) (2009)
180–191.
[27] A. B. Mhadeshwar, D. G. Vlachos, Hierarchical multiscale mechanism
development for methane partial oxidation and reforming and for
thermal decomposition of oxygenates on rh, The Journal of Physical
Chemistry B 109 (35) (2005) 16819–16835.
[28] A. B. Mhadeshwar, D. G. Vlachos, Is the water-gas shift reaction on pt
simple?: Computer-aided microkinetic model reduction, lumped rate
expression, and rate-determining step, Catalysis Today 105 (1) (2005)
162–172.
[29] A. B. Mhadeshwar, D. G. Vlachos, Microkinetic modeling for waterpromoted
co oxidation, water-gas shift, and preferential oxidation of co
on pt, The Journal of Physical Chemistry B 108 (39) (2004) 15246–
15258.
[30] M. Schultze, J. Mantzaras, F. Grygier, R. Bombach, Hetero-
/homogeneous combustion of syngas mixtures over platinum at fuelrich
stoichiometries and pressures up to 14 bar, Proceedings of the
Combustion Institute 35 (2) (2015) 2223–2231.
[31] X. Zheng, J. Mantzaras, R. Bombach, Kinetic interactions between hydrogen
and carbon monoxide oxidation over platinum, Combustion and
Flame 161 (1) (2014) 332–346.
[32] J. Mantzaras, Catalytic combustion of syngas, Combustion Science
and Technology 180 (6) (2008) 1137–1168.
[33] M. Sun, E. B. Croiset, R. R. Hudgins, P. L. Silveston, M. Menzinger,
Steady-state multiplicity and superadiabatic extinction waves in the oxidation
of co/h2 mixtures over a pt/al2o3-coated monolith, Industrial &
Engineering Chemistry Research 42 (1) (2003) 37–45.
[34] J. A. Federici, D. G. Vlachos, Experimental studies on syngas catalytic
combustion on pt/al2o3 in a microreactor, Combustion and Flame
158 (12) (2011) 2540–2543.
[35] Y. Ghermay, J. Mantzaras, R. Bombach, Experimental and numerical
investigation of hetero-/homogeneous combustion of co/h2/o2/n2
mixtures over platinum at pressures up to 5 bar, Proceedings of the
Combustion Institute 33 (2) (2011) 1827–1835.
[36] S. Eriksson, M. Wolf, A. Schneider, J. Mantzaras, F. Raimondi,
M. Boutonnet, S. Järås, Fuel-rich catalytic combustion of methane in
zero emissions power generation processes, Catalysis Today 117 (4)
(2006) 447–453.
[37] S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf, S. JärÅs, Experimental
and numerical investigation of supported rhodium catalysts for
partial oxidation of methane in exhaust gas diluted reaction mixtures,
Chemical Engineering Science 62 (15) (2007) 3991–4011.
[38] A. Schneider, J. Mantzaras, P. Jansohn, Experimental and numerical
investigation of the catalytic partial oxidation of ch4/o2 mixtures diluted
with h2o and co2 in a short contact time reactor, Chemical Engineering
Science 61 (14) (2006) 4634–4649.
[39] J. Duan, L. Sun, G. Wang, F. Wu, Nonlinear modeling of regenerative
cycle micro gas turbine, Energy 91 (2015) 168–175.
[40] FLUENT, Fluent 6.3 user’s guide, Tech. rep., Fluent Inc., Lebanon,
New Hampshire, USA (2006).
[41] J. Mantzaras, C. Appel, P. Benz, U. Dogwiler, Numerical modelling
of turbulent catalytically stabilized channel flow combustion, Catalysis
Today 59 (1-2) (2000) 3–17.
[42] J. Mantzaras, P. Benz, An asymptotic and numerical investigation of
homogeneous ignition in catalytically stabilized channel flow combustion,
Combustion and Flame 119 (4) (1999) 455–472.
[43] J. Mantzaras, C. Appel, Effects of finite rate heterogeneous kinetics on
homogeneous ignition in catalytically stabilized channel flow combustion,
Combustion and Flame 130 (4) (2002) 336–351.
[44] D. G. Norton, D. G. Vlachos, Combustion characteristics and flame stability
at the microscale: a cfd study of premixed methane/air mixtures,
Chemical Engineering Science 58 (21) (2003) 4871–4882.
[45] D. G. Norton, D. G. Vlachos, A cfd study of propane/air microflame
stability, Combustion and Flame 138 (1-2) (2004) 97–107.
[46] O. Deutschmann, L. Maier, U. Riedel, A. H. Stroeman, R. W. Dibble,
Hydrogen assisted catalytic combustion of methane on platinum,
Catalysis Today 59 (1-2) (2000) 141–150.
[47] C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli,
B. Hemmerling, A. Stampanoni, An experimental and numerical
investigation of homogeneous ignition in catalytically stabilized combustion
of hydrogen/air mixtures over platinum, Combustion and Flame
128 (4) (2002) 340–368.
[48] M. Schultze, J. Mantzaras, Hetero-/homogeneous combustion of hydrogen/
air mixtures over platinum: Fuel-lean versus fuel-rich combustion
modes, International Journal of Hydrogen Energy 38 (25) (2013)
10654–10670.
[49] J. Koop, O. Deutschmann, Detailed surface reaction mechanism for ptcatalyzed
abatement of automotive exhaust gases, Applied Catalysis
B: Environmental 91 (1-2) (2009) 47–58.
[50] Y. Ghermay, J. Mantzaras, R. Bombach, Effects of hydrogen preconversion
on the homogeneous ignition of fuel-lean h2/o2/n2/co2 mixtures
over platinum at moderate pressures, Combustion and Flame
157 (10) (2010) 1942–1958.
[51] Y. Ghermay, J. Mantzaras, R. Bombach, K. Boulouchos, Homogeneous
combustion of fuel-lean h2/o2/n2 mixtures over platinum at elevated
pressures and preheats, Combustion and Flame 158 (8) (2011)
1491–1506.
[52] U. Dogwiler, P. Benz, J. Mantzaras, Two-dimensional modelling for catalytically
stabilized combustion of a lean methane-air mixture with elementary
homogeneous and heterogeneous chemical reactions, Combustion
and Flame 116 (1-2) (1999) 243–258.
[53] J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, J. J. S. Jr., A comprehensive
kinetic mechanism for co, ch2o, and ch3oh combustion,
International Journal of Chemical Kinetics 39 (3) (2007) 109–136.
[54] M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, S. J. Klippenstein, Comprehensive
h2/o2 kinetic model for high-pressure combustion, International
Journal of Chemical Kinetics 44 (7) (2012) 444–474.
[55] R. J. Kee, F. M. Rupley, E. Meeks, J. A. Miller, Chemkin-iii: A fortran
chemical kinetics package for the analysis of gas-phase chemical and
plasma kinetics, Tech. Rep. Report No. SAND96-8216, Sandia National
Laboratories, Livermore, CA (USA) (1996).
[56] M. E. Coltrin, R. J. Kee, F. M. Rupley, E. Meeks, Surface chemkin-iii:
A fortran package for analyzing heterogeneous chemical kinetics at a
solid-surface - gas-phase interface, Tech. Rep. Report No. SAND96-
8217, Sandia National Laboratories, Livermore, CA (USA) (1996).
[57] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, H. K.
Moffat, A fortran computer code package for the evaluation of gasphase,
multicomponent transport properties, Tech. Rep. Report No.
SAND86-8246B, Sandia National Laboratories, Livermore, CA (USA)
(1998).
[58] C. H. Kuo, P. D. Ronney, Numerical modeling of non-adiabatic heatrecirculating
combustors, Proceedings of the Combustion Institute
31 (2) (2007) 3277–3284.
[59] A. K. Chaniotis, D. Poulikakos, Modeling and optimization of catalytic
partial oxidation methane reforming for fuel cells, Journal of Power
Sources 142 (1-2) (2005) 184–193.
[60] E. Meeks, H. K. Moffat, J. F. Grcar, R. J. Kee, Aurora: A fortran program
for modeling well stirred plasma and thermal reactors with gas
and surface reactions, Tech. Rep. Report No. SAND96-8218, Sandia
National Laboratories, Livermore, CA (USA) (1996).
Published
2018-05-21
How to Cite
CHEN, Junjie et al.
Effect of hydrogen addition on the catalytic combustion of fuel-lean carbon monoxide-air mixtures over platinum for micro-scale power generation applications.
Journal of Power Technologies, [S.l.], v. 98, n. 1, p. 161–169, may 2018.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/708>. Date accessed: 22 dec. 2024.
Issue
Section
Combustion and Fuel Processing
Keywords
Catalytic combustion; Hydrogen promotion; Carbon monoxide; Synthesis gas; Power generation system
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).