Commoditization of wet and high ash biomass: wet torrefaction—a review

  • Krzysztof Jerzy Mościcki Wrocław University of Technology
  • Łukasz Niedźwiecki University of Leeds
  • Paweł Owczarek University of Twente
  • Mateusz Wnukowski Wrocław University of Technology

Abstract

Biomass is a non-intermittent energy source, which can play an important role in grid-based energy systems, since they needsome non-intermittent sources in order to balance the variability of intermittent sources as wind and solar energy. Currently,this role is played mostly by fossil fuels, mainly because of the bulk size of a single source. Higher variability and lowerenergy concentration, among with some properties of biomass, are obstacles that prevent it from fully becoming a commodity.There are processes, such as dry torrefaction and hydrothermal carbonization (HTC) that could potentially help in terms ofmaking biomass a tradable commodity, as is the case with fossil fuels. HTC, also known as wet torrefaction, might help solveproblems that dry torrefaction is incapable of solving. These obstacles are, namely: high ash content, slagging and foulingproperties of biomass (along with corrosion). Also the high moisture content of some types of biomass poses a problem,since they usually require substantial amounts of heat for drying. This paper reviews current knowledge about a processthat could possibly transform problematic types of biomass into tradable commodities and compares it with other processesoffering similar outcomes.

References

[1] R. E. Sims, The brilliance of bioenergy: in business and in practice,
Earthscan, 2002.
[2] D. L. Klass, Biomass for renewable energy, fuels, and chemicals, Academic
press, 1998.
[3] J. Dinwoodie, Timber, its nature and behaviour, Taylor & Francis,
2000.
[4] R. Björheden, P. Hakkila, A. Lowe, C. Smith, Bioenergy from Sustainable
Forestry: Guiding Principles and Practice, Dordrecht, Kluwer
Academic Pub, 2002.
[5] M. T. Reza, J. Andert, B. Wirth, D. Busch, J. Pielert, J. G. Lynam,
J. Mumme, Hydrothermal carbonization of biomass for energy and
crop production, Applied Bioenergy 1 (1) (2014) 11–29.
[6] F. Vilela, K. Zhang, M. Antonietti, Conjugated porous polymers for
energy applications, Energy & Environmental Science 5 (7) (2012)
7819–7832.
[7] A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal conversion of
biomass to fuels and energetic materials, Current opinion in chemical
biology 17 (3) (2013) 515–521.
[8] M. Titirici, M. Sevilla, Hydrothermal carbonization: a greener route towards
the synthesis of advanced carbon materials, Boletin del Grupo
Español del Carbon 1 (25) (2012) 7–17.
[9] M.-M. Titirici, M. Antonietti, Chemistry and materials options of
sustainable carbon materials made by hydrothermal carbonization,
Chemical Society Reviews 39 (1) (2010) 103–116.
[10] M. Antonietti, M.-M. Titirici, Coal from carbohydrates: The “chimie
douce” of carbon, Comptes Rendus Chimie 13 (1) (2010) 167–173.
[11] M.-M. Titirici, M. Antonietti, N. Baccile, Hydrothermal carbon from
biomass: a comparison of the local structure from poly-to monosaccharides
and pentoses/hexoses, Green Chemistry 10 (11) (2008)
1204–1212.
[12] L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti,
M.-M. Titirici, Sustainable nitrogen-doped carbonaceous materials
from biomass derivatives, Carbon 48 (13) (2010) 3778–3787.
[13] B. Burger, Electricity production from solar and wind in germany in
2014, Tech. rep., Fraunhofer Institute for Solar Energy Systems ISE
(2014).
[14] K. J. Mo´scicki, Ł. Nied´zwiecki, P. Owczarek, M. Wnukowski, Commoditization
of biomass: dry torrefaction and pelletization-a review,
Journal of power technologies 94 (4) (2014) 233–249.
[15] R. Walton, B. Bommel, A complete and comprehensive overview of
torrefaction technologies, Tech. rep., E-EnergyMarket, http://www. eenergymarket.
com/mall/market-reports-and-studies. html (2011).
[16] J. Koppejan, S. Sokhansanj, S. Melin, S. Madrali, Status overview of
torrefaction technologies, Tech. rep., IEA Bioenergy Task 32 (2012).
[17] D. R. Nhuchhen, P. Basu, B. Acharya, A comprehensive review on
biomass torrefaction, International Journal of Renewable Energy &
Biofuels 2014 (2014) 1–56.
[18] J. Shankar Tumuluru, S. Sokhansanj, J. R. Hess, C. T. Wright, R. D.
Boardman, A review on biomass torrefaction process and product properties for energy applications, Industrial Biotechnology 7 (5)
(2011) 384–401.
[19] L. Nunes, J. Matias, J. Catalão, A review on torrefied biomass pellets
as a sustainable alternative to coal in power generation, Renewable
and Sustainable Energy Reviews 40 (2014) 153–160.
[20] P. Basu, C. Kefa, L. Jestin, Boilers and burners: design and theory,
Springer Science & Business Media, 2012.
[21] P. Basu, Combustion and gasification in fluidized beds, CRC press,
2006.
[22] K. Rayaprolu, Boilers for power and process, CRC Press, 2009.
[23] D. A. Tillman, D. Duong, B. Miller, Chlorine in solid fuels fired in pulverized
fuel boilers—sources, forms, reactions, and consequences:
A literature review, Energy & Fuels 23 (7) (2009) 3379–3391.
[24] D. Mudgal, S. Singh, S. Prakash, Corrosion problems in incinerators
and biomass-fuel-fired boilers, International Journal of Corrosion
2014.
[25] K. Hein, Operatinal problems, trace emissions and by-product management
for industrial biomass co-combustion, Tech. rep., Institute
of Process Engineering and Power Plant Technology, University of
Stuttgart (1999).
[26] Bisyplan web-based handbook, [Accessed 24 december 2014].
(2012).
URL http://bisyplan.bioenarea.eu/html-files-en/
[27] F. Rosillo-Calle, J. Woods, The biomass assessment handbook:
bioenergy for a sustainable environment, Earthscan, 2012.
[28] A. Broch, U. Jena, S. K. Hoekman, J. Langford, Analysis of solid and
aqueous phase products from hydrothermal carbonization of whole
and lipid-extracted algae, Energies 7 (1) (2013) 62–79.
[29] A. T. Mursito, T. Hirajima, K. Sasaki, Upgrading and dewatering of raw
tropical peat by hydrothermal treatment, Fuel 89 (3) (2010) 635–641.
[30] A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary
and discussion of chemical mechanisms for process engineering,
Biofuels, Bioproducts and Biorefining 4 (2) (2010) 160–177.
[31] J. R. Pels, P. Bergman, TORWASH: proof of principle, phase 1, ECN,
Energy Research Centre of the Netherlands, 2006.
[32] W. Yan, T. C. Acharjee, C. J. Coronella, V. R. Vasquez, Thermal pretreatment
of lignocellulosic biomass, Environmental Progress & Sustainable
Energy 28 (3) (2009) 435–440.
[33] A. Funke, F. Ziegler, Heat of reaction measurements for hydrothermal
carbonization of biomass, Bioresource technology 102 (16) (2011)
7595–7598.
[34] W. Yan, J. T. Hastings, T. C. Acharjee, C. J. Coronella, V. R.
Vásquez, Mass and energy balances of wet torrefaction of lignocellulosic
biomass, Energy & Fuels 24 (9) (2010) 4738–4742.
[35] M. T. Reza, W. Yan, M. H. Uddin, J. G. Lynam, S. K. Hoekman,
C. J. Coronella, V. R. Vásquez, Reaction kinetics of hydrothermal carbonization
of loblolly pine, Bioresource technology 139 (2013) 161–
169.
[36] H. A. Ruiz, R. M. Rodriguez-Jasso, B. D. Fernandes, A. A. Vicente,
J. A. Teixeira, Hydrothermal processing, as an alternative for upgrading
agriculture residues and marine biomass according to the biorefinery
concept: a review, Renewable and Sustainable Energy Reviews
21 (2013) 35–51.
[37] S. G. Allen, L. C. Kam, A. J. Zemann, M. J. Antal, Fractionation of
sugar cane with hot, compressed, liquid water, Industrial & Engineering
Chemistry Research 35 (8) (1996) 2709–2715.
[38] L. Deng, T. Zhang, D. Che, Effect of water washing on fuel properties,
pyrolysis and combustion characteristics, and ash fusibility of
biomass, Fuel Processing Technology 106 (2013) 712–720.
[39] J. Koppejan, S. Van Loo, The handbook of biomass combustion and
co-firing, Routledge, 2012.
[40] A. Saddawi, J. Jones, A. Williams, C. Le Coeur, Commodity fuels
from biomass through pretreatment and torrefaction: effects of mineral
content on torrefied fuel characteristics and quality, Energy &
Fuels 26 (11) (2012) 6466–6474.
[41] M. Cocchi, L. Nikolaisen, M. Junginger, C. S. Goh, J. Heinimö,
D. Bradley, R. Hess, J. Jacobson, L. P. Ovard, D. Thrän, C. Hennig,
M. Deutmeyer, P. P. Schouwenberg, D. Marchal, Global wood pellet
industry market and trade study, Tech. rep., International Energy
Agency (2011).
[42] B. Erlach, B. Wirth, G. Tsatsaronis, Co-production of electricity;
heat and biocoal pellets from biomass: A techno-economic comparison
with wood pelletizing, in: World Renewable Energy Congress-
Sweden; 8-13 May; 2011; Linköping; Sweden, no. 57, Linköping University
Electronic Press, 2011, pp. 508–515.
[43] A. M. Shulenberger, M. Wechsler, Device and method for conversion
of biomass to biofuel (2010).
[44] B. Wirth, J. Mumme, Anaerobic digestion of waste water from hydrothermal
carbonization of corn silage, Applied Bioenergy 1 (1).
[45] A. Funke, J. Mumme, M. Koon, M. Diakite, Cascaded production
of biogas and hydrochar from wheat straw: energetic potential and
recovery of carbon and plant nutrients, Biomass and bioenergy 58
(2013) 229–237.
[46] I. Oliveira, D. Blöhse, H.-G. Ramke, Hydrothermal carbonization of
agricultural residues, Bioresource technology 142 (2013) 138–146.
[47] A. Funke, F. Reebs, A. Kruse, Experimental comparison of hydrothermal
and vapothermal carbonization, Fuel processing technology 115
(2013) 261–269.
[48] M.-M. Titirici, A. Thomas, M. Antonietti, Back in the black: hydrothermal
carbonization of plant material as an efficient chemical process
to treat the co 2 problem?, New Journal of Chemistry 31 (6) (2007)
787–789.
[49] S. Chang, Z. Zhao, A. Zheng, X. Li, X. Wang, Z. Huang, F. He, H. Li,
Effect of hydrothermal pretreatment on properties of bio-oil produced
from fast pyrolysis of eucalyptus wood in a fluidized bed reactor,
Bioresource technology 138 (2013) 321–328.
[50] M. T. Reza, J. G. Lynam, M. H. Uddin, C. J. Coronella, Hydrothermal
carbonization: fate of inorganics, Biomass and Bioenergy 49 (2013)
86–94.
[51] J. E. White, W. J. Catallo, B. L. Legendre, Biomass pyrolysis kinetics:
a comparative critical review with relevant agricultural residue case
studies, Journal of Analytical and Applied Pyrolysis 91 (1) (2011) 1–
33.
[52] J. Stemann, A. Putschew, F. Ziegler, Hydrothermal carbonization:
process water characterization and effects of water recirculation,
Bioresource technology 143 (2013) 139–146.
[53] S. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, L. Felix, Hydrothermal
carbonization (htc) of selected woody and herbaceous
biomass feedstocks, Biomass Conversion and Biorefinery 3 (2)
(2013) 113–126.
[54] M. T. Reza, E. Rottler, L. Herklotz, B. Wirth, Hydrothermal carbonization
(htc) of wheat straw: Influence of feedwater ph prepared by acetic
acid and potassium hydroxide, Bioresource technology 182 (2015)
336–344.
[55] M. H. Uddin, M. T. Reza, J. G. Lynam, C. J. Coronella, Effects of water
recycling in hydrothermal carbonization of loblolly pine, Environmental
Progress & Sustainable Energy 33 (4) (2014) 1309–1315.
[56] W. Tirler, A. Basso, Resembling a “natural formation pattern” of chlorinated
dibenzo-p-dioxins by varying the experimental conditions of
hydrothermal carbonization, Chemosphere 93 (8) (2013) 1464–1470.
[57] X. Lu, B. Jordan, N. D. Berge, Thermal conversion of municipal solid
waste via hydrothermal carbonization: comparison of carbonization
products to products from current waste management techniques,
Waste management 32 (7) (2012) 1353–1365.
[58] N. D. Berge, K. S. Ro, J. Mao, J. R. Flora, M. A. Chappell, S. Bae, Hydrothermal
carbonization of municipal waste streams, Environmental
science & technology 45 (13) (2011) 5696–5703.
[59] C. He, A. Giannis, J.-Y. Wang, Conversion of sewage sludge to clean
solid fuel using hydrothermal carbonization: hydrochar fuel characteristics
and combustion behavior, Applied Energy 111 (2013) 257–266.
[60] Solid biofuels — fuel specifications and classes. part 1 general requirements
(2014).
[61] A. Zheng, Z. Zhao, S. Chang, Z. Huang, K. Zhao, G. Wei, F. He,
H. Li, Comparison of the effect of wet and dry torrefaction on chemical
structure and pyrolysis behavior of corncobs, Bioresource technology
176 (2015) 15–22.
[62] H. S. Kambo, A. Dutta, Comparative evaluation of torrefaction and
hydrothermal carbonization of lignocellulosic biomass for the production
of solid biofuel, Energy conversion and management 105 (2015)
746–755.
[63] Q.-V. Bach, K.-Q. Tran, Dry and wet torrefaction of woody biomass–a
comparative studyon combustion kinetics, Energy Procedia 75 (2015)
150–155.
[64] M. Pala, I. C. Kantarli, H. B. Buyukisik, J. Yanik, Hydrothermal carbonization
and torrefaction of grape pomace: A comparative evaluation,
Bioresource technology 161 (2014) 255–262.
[65] W.-H. Chen, S.-C. Ye, H.-K. Sheen, Hydrothermal carbonization of
sugarcane bagasse via wet torrefaction in association with microwave
heating, Bioresource technology 118 (2012) 195–203.
[66] M. Wnukowski, P. Owczarek, et al., Wet torrefaction of miscanthus–
characterization of hydrochars in view of handling, storage and combustion
properties, Journal of Ecological Engineering 16 (3) (2015)
161–167.
[67] D. Basso, F. Patuzzi, D. Castello, M. Baratieri, E. C. Rada, E. Weiss-
Hortala, L. Fiori, Agro-industrial waste to solid biofuel through hydrothermal
carbonization, Waste Management 47 (2016) 114–121.
[68] X. Lu, P. J. Pellechia, J. R. Flora, N. D. Berge, Influence of reaction
time and temperature on product formation and characteristics associated
with the hydrothermal carbonization of cellulose, Bioresource
technology 138 (2013) 180–190.
[69] M. Pronobis, Evaluation of the influence of biomass co-combustion
on boiler furnace slagging by means of fusibility correlations, Biomass
and Bioenergy 28 (4) (2005) 375–383.
[70] B. Jenkins, L. Baxter, T. Miles Jr, T. Miles, Combustion properties of
biomass, Fuel processing technology 54 (1-3) (1998) 17–46.
[71] E. Sermyagina, J. Saari, J. Kaikko, E. Vakkilainen, Hydrothermal carbonization
of coniferous biomass: Effect of process parameters on
mass and energy yields, Journal of Analytical and Applied Pyrolysis
113 (2015) 551–556.
[72] V. Benavente, E. Calabuig, A. Fullana, Upgrading of moist agroindustrial
wastes by hydrothermal carbonization, Journal of Analytical
and Applied Pyrolysis 113 (2015) 89–98.
[73] E. Erdogan, B. Atila, J. Mumme, M. T. Reza, A. Toptas, M. Elibol,
J. Yanik, Characterization of products from hydrothermal carbonization
of orange pomace including anaerobic digestibility of process
liquor, Bioresource technology 196 (2015) 35–42.
[74] J. Poerschmann, B. Weiner, H. Wedwitschka, A. Zehnsdorf,
R. Koehler, F.-D. Kopinke, Characterization of biochars and dissolved
organic matter phases obtained upon hydrothermal carbonization of
elodea nuttallii, Bioresource technology 189 (2015) 145–153.
[75] M. Sevilla, J. A. Macia-Agullo, A. B. Fuertes, Hydrothermal carbonization
of biomass as a route for the sequestration of co 2: chemical and
structural properties of the carbonized products, Biomass and Bioenergy
35 (7) (2011) 3152–3159.
[76] E. Danso-Boateng, G. Shama, A. D. Wheatley, S. J. Martin,
R. Holdich, Hydrothermal carbonisation of sewage sludge: effect of
process conditions on product characteristics and methane production,
Bioresource technology 177 (2015) 318–327.
[77] T. Keipi, H. Tolvanen, L. Kokko, R. Raiko, The effect of torrefaction
on the chlorine content and heating value of eight woody biomass
samples, Biomass and Bioenergy 66 (2014) 232–239.
[78] M. Deutmeyer, D. Bradley, B. Hektor, R. Hess, L. Nikolaisen, J. Tumuluru,
M. Wild, Possible effect of torrefaction on biomass trade, in: IEA
bioenergy task, Vol. 40, 2012.
[79] B. Batidzirai, A. Mignot, W. Schakel, H. Junginger, A. Faaij,
Biomass torrefaction technology: Techno-economic status and future
prospects, Energy 62 (2013) 196–214.
[80] M. Svanberg, I. Olofsson, J. Flodén, A. Nordin, Analysing biomass
torrefaction supply chain costs, Bioresource technology 142 (2013)
287–296.
[81] Handbook for the certification of wood pellets for heating purposes v
2.0„ published by European Pellet Council (2013).
[82] G. Christa, P. Wilfried, G. Michael, H. A. HFA, Hygroscopicity of wood
pellets test method development–influence on pellet quality–coating
of wood pellets, in: Proceedings of the 2nd World Conference on
Pellets, 2006.
[83] H. M. Künzel, Indoor relative humidity in residential buildings–
a necessary boundary condition to assess the moisture performance
of building envelope systems, Download: http://www.
hoki. ibp. fraunhofer. de/ibp/publikationen/fachzeitschriften/wksb%
20Raumluftfeuchte1_E. pdf.
[84] G. J. Jenkins, et al., The climate of the United Kingdom and recent
trends, Exeter: Met Office Hadley Centre, 2007.
[85] T. C. Acharjee, C. J. Coronella, V. R. Vasquez, Effect of thermal pretreatment
on equilibrium moisture content of lignocellulosic biomass,
Bioresource technology 102 (7) (2011) 4849–4854.
[86] W. Yang, T. Shimanouchi, M. Iwamura, Y. Takahashi, R. Mano,
K. Takashima, T. Tanifuji, Y. Kimura, Elevating the fuel properties of
humulus lupulus, plumeria alba and calophyllum inophyllum l. through
wet torrefaction, Fuel 146 (2015) 88–94.
[87] W. Yan, S. K. Hoekman, A. Broch, C. J. Coronella, Effect of hydrothermal
carbonization reaction parameters on the properties of hydrochar
and pellets, Environmental Progress & Sustainable Energy 33 (3)
(2014) 676–680.
[88] Z. Liu, A. Quek, R. Balasubramanian, Preparation and characterization
of fuel pellets from woody biomass, agro-residues and their
corresponding hydrochars, Applied Energy 113 (2014) 1315–1322.
[89] M. T. Reza, M. H. Uddin, J. G. Lynam, C. J. Coronella, Engineered
pellets from dry torrefied and htc biochar blends, Biomass and Bioenergy
63 (2014) 229–238.
[90] S. K. Hoekman, A. Broch, A. Warren, L. Felix, J. Irvin, Laboratory
pelletization of hydrochar from woody biomass, Biofuels 5 (6) (2014)
651–666.
[91] Solid biofuels - determination of mechanical durability of pellets and
briquettes - part 1: Pellets (2015).
[92] U. Svedberg, J. Samuelsson, S. Melin, Hazardous off-gassing of carbon
monoxide and oxygen depletion during ocean transportation of
wood pellets, Annals of occupational hygiene 52 (4) (2008) 259–266.
[93] X. Kuang, T. J. Shankar, X. T. Bi, S. Sokhansanj, C. Jim Lim, S. Melin,
Characterization and kinetics study of off-gas emissions from stored
wood pellets, Annals of Occupational Hygiene 52 (8) (2008) 675–683.
[94] S. Gauthier, H. Grass, M. Lory, T. Krämer, M. Thali, C. Bartsch, Lethal
carbon monoxide poisoning in wood pellet storerooms—two cases
and a review of the literature, Annals of occupational hygiene 56 (7)
(2012) 755–763.
[95] W. Emhofer, K. Lichtenegger, W. Haslinger, H. Hofbauer,
I. Schmutzer-Roseneder, S. Aigenbauer, M. Lienhard, Ventilation of
carbon monoxide from a biomass pellet storage tank—a study of the
effects of variation of temperature and cross-ventilation on the efficiency
of natural ventilation, Annals of Occupational Hygiene 59 (1)
(2014) 79–90.
[96] Eh40/2005 workplace exposure limits, published by Health and
Safety Executive (United Kingdom) (2011).
[97] C. H. Medina, H. Sattar, H. N. Phylaktou, G. E. Andrews, B. M. Gibbs,
Explosion reactivity characterisation of pulverised torrefied spruce
wood, Journal of Loss Prevention in the Process Industries 36 (2015)
287–295.
[98] A. Boskovic, P. Basu, P. Amyotte, An exploratory study of explosion
potential of dust from torrefied biomass, The Canadian Journal of
Chemical Engineering 93 (4) (2015) 658–663.
[99] C. H. Medina, B. MacCoitir, H. Sattar, D. J. Slatter, H. N. Phylaktou,
G. E. Andrews, B. M. Gibbs, Comparison of the explosion characteristics
and flame speeds of pulverised coals and biomass in the iso
standard 1m 3 dust explosion equipment, Fuel 151 (2015) 91–101.
[100] D. M. Boylan, G. K. Roberts, B. Zemo, J. L. Wilson, Torrefied wood
field tests at a coal-fired power plant, in: Pulp and Paper Industry
Technical Conference, Conference Record of 2014 Annual, IEEE,
2014, pp. 101–107.
[101] Accessed September 2015. [link].
URL https://www.ecn.nl/news/item/successful-test-with-innovative-renewable-energy-source-at-amer-power-plant/
[102] Accessed September 2015. [link].
URL http://biomassmagazine.com/articles/10027/dutch
-power-plant-successfully-tests-torrefiedbiomass-
pellets
[103] N. Padban, First experiences from large scale co-gasification tests
with refined biomass fuels, in: Central European Biomass Conference.
17th January, 2014.
[104] Hard coal — determination of hardgrove grindability index (2015).
[105] Accessed September 2015. [link].
URL http://www.businesswire.com/news/home/201211
22005340/en/HTC-1-Industrial-Planthydrothermal-
carbonization-Worldwide-AVACO2#. Vf7pr5eoPhp
[106] Accessed September 2015. [link].
URL http://www.suncoal.de/en/technology/htc-pilotplant.
Published
2016-01-15
How to Cite
MOŚCICKI, Krzysztof Jerzy et al. Commoditization of wet and high ash biomass: wet torrefaction—a review. Journal of Power Technologies, [S.l.], v. 97, n. 4, p. 354–369, jan. 2016. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/679>. Date accessed: 05 aug. 2021.
Section
Combustion and Fuel Processing

Keywords

commoditization of biomass, torrefaction, hydrothermal carbonization

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.