Numerical simulations of epitaxial growth in MOVPE reactor as a tool for aluminum nitride growth optimization
Abstract
The present study concerns numerical simulations and experimental measurements on the influence of inlet gas mass flowrate on the growth rate of aluminum nitride crystals in Metalorganic Vapor Phase Epitaxy reactor model AIX-200/4RF-S. Theaim of this study was to design the optimal process conditions for obtaining the most homogeneous product. Since thereare many agents influencing reactions relating to crystal growth such as temperature, pressure, gas composition and reactorgeometry, it is difficult to design an optimal process. Variations of process pressure and hydrogen mass flow rates have beenconsidered. Since it is impossible to experimentally determine the exact distribution of heat and mass transfer inside thereactor during crystal growth, detailed 3D modeling has been used to gain insight into the process conditions. Numericalsimulations increase the understanding of the epitaxial process by calculating heat and mass transfer distribution during thegrowth of aluminum nitride crystals. Including chemical reactions in the numerical model enables the growth rate of thesubstrate to be calculated. The present approach has been applied to optimize homogeneity of AlN film thickness and itsgrowth rate.References
[1] N. G. Wright, A. B. Horsfall, K. Vassilevski, Prospects for SiC
electronics and sensors, Materials Today 11 (2008) 16 – 21, doi:
10.1016/S1369-7021(07)70348-6.
[2] P. Caban, W. Strupinski, J. Szmidt, M. Wojcik, J. Gaca, O. Kelekci,
D. Caliskan, E. Ozbay, Effect of growth pressure on coalescence
thickness and crystal quality of GaN deposited on 4HSiC,
Journal of Crystal Growth 315 (1) (2011) 168 – 173, doi:
10.1016/j.jcrysgro.2010.09.058.
[3] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek,
P. E. Gaskell, A. GrA˘ L’neis, D. Haberer, R. Bozek, J. Krupka, J. M.
Baranowski, Graphene Epitaxy by Chemical Vapor Deposition on SiC,
Nano Letters 11 (4) (2011) 1786–1791, doi:10.1021/nl200390e.
[4] S. Karpov, Advances in the modeling of MOVPE processes, Journal of
Crystal Growth 248 (2003) 1 – 7, doi:10.1016/S0022-0248(02)01838-
9.
[5] J. Skibinski, P. Caban, A. K. Lewandowska, T. Wejrzanowski, K. J.
Kurzydlowski, Numerical simulations of heat and mass transfer in the
MOVPE process for obtaining high-quality nitride-based semiconductors,
WIT Transactions on Modelling and Simulation 59 (2015) 433–
440, doi:10.2495/CMEM150391.
[6] T. Wejrzanowski, J. Skibinski, A. K. Lewandowska, K. J. Kurzydlowski,
Modeling Of Heat And Mass Transfer In An SiC CVD Reactor As A Tool
To Design Modern Materials For High Power Electronics Applications,
WIT Transactions on Engineering Sciences 91 (2015) 213–220, doi:
10.2495/SECM150191.
[7] S. A. Safvi, J. M. Redwing, M. A. Tischler, T. F. Kuech, GaN Growth by
Metallorganic Vapor Phase Epitaxy: A Comparison of Modeling and
Experimental Measurements, Journal of The Electrochemical Society
144 (5) (1997) 1789–1796, doi:10.1149/1.1837681.
[8] E. Yakovlev, R. Talalaev, Y. Makarov, B. Yavich, W. Wang, Deposition
behavior of GaN in AIX 200/4 RF-S horizontal reactor, Journal of Crystal
Growth 261 (2004) 182 – 189, doi:10.1016/j.jcrysgro.2003.11.010.
[9] J. Skibinski, T. Wejrzanowski, D. Teklinska, K. J. Kurzydlowski, Influence
of hydrogen volumetric flow rate on temperature distribution in
CVD reactor based on epi-growth of SiC, Journal of Power Technologies
95 (2) (2015) 119–125.
[10] R. Pawlowski, C. Theodoropoulos, A. Salinger, T. Mountziaris, H. Moffat,
J. Shadid, E. Thrush, Fundamental models of the metalorganic
vapor-phase epitaxy of gallium nitride and their use in reactor design,
Journal of Crystal Growth 221 (2000) 622 – 628, doi:10.1016/S0022-
0248(00)00789-2.
[11] M. Dauelsberg, H. Hardtdegen, L. Kadinski, A. Kaluza, P. Kaufmann,
Modeling and experimental verification of deposition behavior during
AlGaAs growth: a comparison for the carrier gases N2 and H2,
Journal of Crystal Growth 223 (2001) 21 – 28, doi:10.1016/S0022-
0248(00)00970-2.
[12] H. Hardtdegen, A. Kaluza, D. Gauer, M. Ahe, M. Grimm, P. Kaufmann,
L. Kadinski, On the influence of gas inlet configuration with
respect to homogeneity in a horizontal single wafer MOVPE reactor,
Journal of Crystal Growth 223 (2001) 15 – 20, doi:10.1016/S0022-
0248(00)00969-6.
[13] C. S. Kim, J. Hong, J. Shim, B. J. Kim, H.-H. Kim, S. D. Yoo, W. S. Lee,
Numerical and Experimental Study on Metal Organic Vapor-Phase
Epitaxy of InGaN/GaN Multi-Quantum-Wells, Journal of Fluids Engineering
130 (8) (2008) 081601–081601, doi:10.1115/1.2956513.
[14] M.Dauelsberg, L.Kandinski, Yu.N.Makarov, E.Woelk, G.Strauch,
D.Schmitz, H.Juergensen, GaN-MOVPE: correlation between computer
modelling and experimental data, Institute of Physics Conference
Series 142 (887).
[15] J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski, Numerical
simulations of epitaxial growth process in MOVPE reactor as
a tool for design of modern semiconductors for high power electronics,
AIP Conference Proceedings 1618 (1) (2014) 859–862, doi:
10.1063/1.4897867.
[16] M. Dutka, M. Ditaranto, T. Løvås, Emission characteristics of a novel
low NOx burner fueled by hydrogen-rich mixtures with methane, Journal
of Power Technologies 95 (2) (2015) 105.
electronics and sensors, Materials Today 11 (2008) 16 – 21, doi:
10.1016/S1369-7021(07)70348-6.
[2] P. Caban, W. Strupinski, J. Szmidt, M. Wojcik, J. Gaca, O. Kelekci,
D. Caliskan, E. Ozbay, Effect of growth pressure on coalescence
thickness and crystal quality of GaN deposited on 4HSiC,
Journal of Crystal Growth 315 (1) (2011) 168 – 173, doi:
10.1016/j.jcrysgro.2010.09.058.
[3] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek,
P. E. Gaskell, A. GrA˘ L’neis, D. Haberer, R. Bozek, J. Krupka, J. M.
Baranowski, Graphene Epitaxy by Chemical Vapor Deposition on SiC,
Nano Letters 11 (4) (2011) 1786–1791, doi:10.1021/nl200390e.
[4] S. Karpov, Advances in the modeling of MOVPE processes, Journal of
Crystal Growth 248 (2003) 1 – 7, doi:10.1016/S0022-0248(02)01838-
9.
[5] J. Skibinski, P. Caban, A. K. Lewandowska, T. Wejrzanowski, K. J.
Kurzydlowski, Numerical simulations of heat and mass transfer in the
MOVPE process for obtaining high-quality nitride-based semiconductors,
WIT Transactions on Modelling and Simulation 59 (2015) 433–
440, doi:10.2495/CMEM150391.
[6] T. Wejrzanowski, J. Skibinski, A. K. Lewandowska, K. J. Kurzydlowski,
Modeling Of Heat And Mass Transfer In An SiC CVD Reactor As A Tool
To Design Modern Materials For High Power Electronics Applications,
WIT Transactions on Engineering Sciences 91 (2015) 213–220, doi:
10.2495/SECM150191.
[7] S. A. Safvi, J. M. Redwing, M. A. Tischler, T. F. Kuech, GaN Growth by
Metallorganic Vapor Phase Epitaxy: A Comparison of Modeling and
Experimental Measurements, Journal of The Electrochemical Society
144 (5) (1997) 1789–1796, doi:10.1149/1.1837681.
[8] E. Yakovlev, R. Talalaev, Y. Makarov, B. Yavich, W. Wang, Deposition
behavior of GaN in AIX 200/4 RF-S horizontal reactor, Journal of Crystal
Growth 261 (2004) 182 – 189, doi:10.1016/j.jcrysgro.2003.11.010.
[9] J. Skibinski, T. Wejrzanowski, D. Teklinska, K. J. Kurzydlowski, Influence
of hydrogen volumetric flow rate on temperature distribution in
CVD reactor based on epi-growth of SiC, Journal of Power Technologies
95 (2) (2015) 119–125.
[10] R. Pawlowski, C. Theodoropoulos, A. Salinger, T. Mountziaris, H. Moffat,
J. Shadid, E. Thrush, Fundamental models of the metalorganic
vapor-phase epitaxy of gallium nitride and their use in reactor design,
Journal of Crystal Growth 221 (2000) 622 – 628, doi:10.1016/S0022-
0248(00)00789-2.
[11] M. Dauelsberg, H. Hardtdegen, L. Kadinski, A. Kaluza, P. Kaufmann,
Modeling and experimental verification of deposition behavior during
AlGaAs growth: a comparison for the carrier gases N2 and H2,
Journal of Crystal Growth 223 (2001) 21 – 28, doi:10.1016/S0022-
0248(00)00970-2.
[12] H. Hardtdegen, A. Kaluza, D. Gauer, M. Ahe, M. Grimm, P. Kaufmann,
L. Kadinski, On the influence of gas inlet configuration with
respect to homogeneity in a horizontal single wafer MOVPE reactor,
Journal of Crystal Growth 223 (2001) 15 – 20, doi:10.1016/S0022-
0248(00)00969-6.
[13] C. S. Kim, J. Hong, J. Shim, B. J. Kim, H.-H. Kim, S. D. Yoo, W. S. Lee,
Numerical and Experimental Study on Metal Organic Vapor-Phase
Epitaxy of InGaN/GaN Multi-Quantum-Wells, Journal of Fluids Engineering
130 (8) (2008) 081601–081601, doi:10.1115/1.2956513.
[14] M.Dauelsberg, L.Kandinski, Yu.N.Makarov, E.Woelk, G.Strauch,
D.Schmitz, H.Juergensen, GaN-MOVPE: correlation between computer
modelling and experimental data, Institute of Physics Conference
Series 142 (887).
[15] J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski, Numerical
simulations of epitaxial growth process in MOVPE reactor as
a tool for design of modern semiconductors for high power electronics,
AIP Conference Proceedings 1618 (1) (2014) 859–862, doi:
10.1063/1.4897867.
[16] M. Dutka, M. Ditaranto, T. Løvås, Emission characteristics of a novel
low NOx burner fueled by hydrogen-rich mixtures with methane, Journal
of Power Technologies 95 (2) (2015) 105.
Published
2016-07-07
How to Cite
SKIBINSKI, Jakub et al.
Numerical simulations of epitaxial growth in MOVPE reactor as a tool for aluminum nitride growth optimization.
Journal of Power Technologies, [S.l.], v. 96, n. 2, p. 110--114, july 2016.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/668>. Date accessed: 21 nov. 2024.
Issue
Section
Materials Science
Keywords
metalorganic vapor phase epitaxy, Finite Volume Method, semiconductors, aluminum nitride
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).