Economic evaluation of A-USC power plant with CO2 capture unit
Abstract
Achieving CO2 emission control while keeping electricity prices competitive is one of the most important economic and technical challenges. The strategy for lowering the CO2 emission from the coal-based power plants includes first of all raising electricity generation efficiency. Currently, steam temperatures in ultra-supercritical (USC) power plants are limited to approximately 627ºC by the use of the most advanced commercially available ferritic steels. To go to higher temperatures, high-nickel alloys must be used. The nickel alloys are at an advanced stage of development and are expected to be available to support construction of a demonstration plant in Europe in 2021. For pulverized coal (PC) plants the development means progressing to advanced ultra-supercritical (A-USC) steam conditions - 35MPa/700/720ºC. It turned out that the concept consists in gradually raising the live steam temperature and pressure can become economically unjustified. Cost-effectiveness of new investments can be provided only by a significant increase in the efficiency of electricity generation. In the paper the economic evaluation of 900 MW PC unit is presented. The main aim is to compare the cost of electricity generation in USC (28MPa/600/620ºC) and A-USC (35MPa/700/720ºC) power unit. The variants with CO2 capture installation by chemical absorption MEA are considered. Compared to a USC design, the capital cost of the A-USC PC plant will be higher, but the operating cost will be lower. Because of the higher efficiency of the A-USC plant, the differential in operating cost increases as fuel price increases and CO2 cost charges are included.
Published
2015-06-11
How to Cite
STĘPCZYŃSKA-DRYGAS, Katarzyna et al.
Economic evaluation of A-USC power plant with CO2 capture unit.
Journal of Power Technologies, [S.l.], v. 95, n. 5, p. 75--83, june 2015.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/660>. Date accessed: 05 nov. 2024.
Section
Polish Energy Mix 2014
Keywords
A-USC power plant, PC power plant, CO2 capture
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).