Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials

  • Karol Pietrak Institute of Heat Engineering, Warsaw University of Technology
  • Tomasz S. Wiśniewski Institute of Heat Engineering, Warsaw University of Technology


Interfacial thermal resistance (ITR) exists between filler and matrix in any composite material and has great influence on its effective thermal conductivity. To predict the effective thermal conductivity of composite material, the conductivities of each component as well as the ITR must be known. Theoretical models, like acoustic mismatch model (AMM), allow for accurate ITR determination only for an idealized case of perfect contact (no interfacial gaps and good bonding). The interfacial bonding in typical composites for thermal conduction, like diamond-reinforced metal matrix composites (MMCs) is usually highly imperfect and the ITR, in composites of the same type, depends highly on the individual manufacturing conditions. Therefore, a great need for reliable experimental ITR measurement techniques exists. In this paper, main difficulties regarding experimental ITR measurements are discussed. A review of measurement techniques is presented, with the main focus put on the principle of each technique and its fitness for the purpose of composite materials. The strengths and weaknesses of each technique are discussed.


[1] G. Bai, W. Jiang, L. Chen.: Effect of Interfacial Thermal Resistance on Effective Thermal Conductivity of MoSi2 /SiC Composites, Materials Transactions, Vol. 47, No. 4 (2006) pp. 1247 to 1249.

[2] E. T. Swarz, R. O. Pohl.: Thermal boundary resistance, Rev. Mod. Phys., vol. 61, no. 3, p. 605, 1989.

[3] R. S. Prasher, P. E. Phelan.: A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance, J. Heat Transfer, Volume 123, Issue 1 (2001) pp. 105.

[4] P. Furmański, T. S. Wiśniewski, J. Banaszek.: Thermal contact resistance and other thermal phenomena at solid-solid interface, Institute of Heat Engineering, Warsaw 2008.

[5] D. G. Cahill et al.: Nanoscale thermal transport, J. Appl. Phys. 93, 793 (2003)

[6] E. Chapelle , B. Garnier, B. Bourouga.: Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites, Int. J. Th. Sci, Volume 48, Issue 12 (2009), pp. 2221.

[7] H. Bhatt, K. Y. Donaldson, D. P. H. Hasselman.: Role of interfacial carbon layer in the thermal diffusivity/conductivity of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites, J. Am. Ceram. Soc., vol 75, no. 2, p.334, 1992.

[8] C.-W. Nan, X.-P. Li, R. Birringer.: Inverse problem for composites with imperfect interface: determination of interfacial thermal resistance, thermal conductivity of constituents, and microstructural parameters, J. Am. Ceram. Soc., 83 [4] 848–54, 2000.

[9] K. Jagannadham, Hsin Wang.: Thermal resistance of interfaces in AlN–diamond thin film composites, J. Appl. Phys. 91, 1224, 2002.

[10] F. Macedo, J. A. Ferreira.: Thermal contact resistance evaluation in polymer-based carbon fiber composites, Rev. Sci. Instr., vol. 74, no. 1, 2003.

[11] M. Kida, L. Weber, C. Monachon, A. Mortensen.: Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, J. Appl. Phys. 109, 064907, 2011.

[12] A. M. Abyzov, S. V. Kidalov, F. M. Shakhov.: Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity, Physics of the Solid State, Vol. 54, No. 1, p. 210–215, 2012.

[13] E. T. Swarz, R. O. Pohl.: Thermal resistance at interfaces, Appl. Phys. Lett., vol. 51,s. 2200, 1987.

[14] K. E. Goodson, M. I. Flik, L. T. Su, D. A. Antoniadis.: Annealing-temperature dependence of the thermal conductivity of LPCVD silicon-dioxide layers, IEEE Electron Dev. Lett, Vol. 14, No. 10(1993).

[15] A. N. Smith, J. L. Hostetler, P. M. Norris.: Thermal boundary resistance measurements using a transient thermoreflectance technique, Microscale Thermophysical Engineering, Vol. 4, no. 1(2000), pp. 51-60.

[16] R. J. Stoner, H. J. Maris.: Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K, Phys. Rev. B, vol. 48, no. 22(1993), pp. 16 373.

[17] R. J. Stevens, A. N. Smith, P. M. Norris.: Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique, Journal of Heat Transfer, Vol. 127(2005), pp. 315.

[18] F. Lepoutre, D. Balageas, Ph. Forge, S. Hirschi, J. L. Joulaud, D. Rochais, F. C. Chen.: Micronscale thermal characterizations of interfaces parallel or perpendicular to the surface, J. Appl. Phys. 78, 2208, 1995.

[19] B. Li, J. P. Roger, L. Pottier, D. Fournier.: Complete thermal characterization of film-on-substrate system by modulated thermoreflectance microscopy and multiparameter fitting, J. Appl. Phys., vol. 86(1999) pp. 5314.

[20] B. Li, S. Zhang.: The effect of interface resistances on thermal wave propagation in multi-layered samples, J. Phys. D: Appl. Phys. 30(1997), pp. 1447–1454.

[21] G. Meyer-Berg, R. Osiander, P. Korpiun, P. Kakoschke, H. Joswig.: The thermal resistance of grain boundaries determined by modulated optical reflectance, [in:] Springer series in Optical Sciences 69, pp. 711-713, Springer, Berlin, 1992.

[22] B. Garnier, T. Dupuis, J. Gilles, J. P. Bardon, F. Danes.: Thermal contact resistance between matrix and particle in composite materials measured by a thermal microscopic method using semi-intrinsic thermocouple, Proceedings of the 12th International Heat Transfer Conference, Grenoble, France, 2002, pp. 9-14.

[23] D. Maillet, S. Andre, J.-C. Batsale, A. Degiovanni, C. Moyne.: Thermal quadrupoles, Wiley, Chicester, 2000.

[24] R. F. Hill, P. H. Supancic.: Determination of the thermal resistance of the polymer–ceramic interface of alumina-filled polymer composites, J. Am. Ceram. Soc., 87 [10] 1831–1835, 2004.

[25] W. J. Parker, R. J. Jenkins , C. P. Butler, G. L. Abbott.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys., 32 [9] 1679–84, 1961.

[26] R. D. Cowan.: Pulse method of measuring thermal diffusivity at high temperatures, J. Appl. Phys., 34 [4] 926–7, 1963.

[27] J. A. Cape, G.W. Lehman.: Temperature and finite-time efects in the flash method for measuring thermal diffusivity, J. Appl. Phys. vol. 34 (1963) p. 1909.

[28] C-P. Chiu, J. G. Maveety, Q. A. Tran.: Characterization of solder interfaces using laser flash metrology, Microelectronics Reliability 42, 93–100, 2002.

[29] J. Absi, D. S. Smith, B. Nait-Ali, S. Grandjean, J. Berjonnaux.: Thermal response of two-layer systems: Numerical simulation and experimental validation, Journal of the European Ceramic Society 25 (2005) 367–373.

[30] H. J. Lee.: Thermal diffusivity in layered and dispersed composites, PhD thesis (Purdue University, Lafayette, Indiana, 1975).

[31] J. Hartmann, O. Nilsson, J. Fricke.: Thermal diffusivity measurements on two-layered and three-layered systems with the laser flash method, High Temperatures-High Pressures, vol. 25 (1993), pp. 403-410.

[32] N. D. Milosević, M. Raynaud, K. D. Maglić.: Simultaneous Estimation of the Thermal Diffusivity and Thermal Contact Resistance of Thin Solid Films and Coatings Using the Two-Dimensional Flash Method, International Journal of Thermophysics, Vol. 24, No. 3(2003), pp. 799-819.

[33] N. D. Milosević.: Optimal parametrization in the measurements of the thermal diffusivity of thermal barrier coatings, Thermal Science: Vol. 11 (2007), No. 1, pp. 137-156.

[34] N. D. Milosević.: Determination of Transient Thermal Interface Resistance Between Two Bonded Metal Bodies using the Laser-Flash Method, Int J Thermophys (2008) 29:2072–2087.

[35] Z. Tao, Q. Guo, X. Gao, L. Liu.: The wettability and interface thermal resistance of copper/graphite system with an addition of chromium, Materials Chemistry and Physics 128 (2011) 228–232.

[36] P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, P. J. Uggowitzer.: Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity, Composites Science and Technology 66 (2006) 2677–2685.

[37] K. Chu, Ch. Jia, X. Liang, H. Chen, W. Gao, H. Guo.: Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance, Materials and Design 30 (2009) 4311–4316.
How to Cite
PIETRAK, Karol; WIŚNIEWSKI, Tomasz S.. Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials. Journal of Power Technologies, [S.l.], v. 94, n. 4, p. 270--285, oct. 2014. ISSN 2083-4195. Available at: <>. Date accessed: 05 aug. 2021.
Materials Science


interfacial thermal resistance; thermal boundary resistance; composite materials

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.