Solid Oxide Electrolyzer Cell Modeling: A Review

  • Jan Pawel Stempien School of Mechanical Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Energy Research Institute at NTU, 1 CleanTech Loop #06-04, Singapore 637141, Singapore
  • Qiang Sun Department of Advanced Materials and Nanotechnology, Collage of Engineering, Peking University, Beijing 100871, China
  • Siew Hwa Chan School of Mechanical Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Energy Research Institute at NTU, 1 CleanTech Loop #06-04, Singapore 637141, Singapore

Abstract

Solid Oxide Electrolyzer Cell (SOEC) is a very good candidate technology for securing sustainable development for the future. It allows CO2 to be recycled into usable fuels and has potential for hydrogen economy. In this work the authors focus on development of SOEC through modeling different aspects of the cell: from design of specific elements to final incorporation of electrolyzers in the global energy system and network. The publications reviewed span from the 1970s to the present day and cover a selection of most contributed works. The selected publications provide means for modeling the solid oxide electrolyzer cell in both steady and transient states. The scale of the models ranges from micro to macro and to global energy system levels. The thrust of this work is to summarize the current level of development in modeling the solid oxide electrolyzer cell and to highlight unresolved problems and provide pointers in terms of research gaps requiring closer attention by engineers and scientists.

References

[1] Nicholson W., Carlisle A.: Account of the new Electrical or Galvanic Apparatus of Alessandro Volta and Experiments performed with the same, Journal of Natural Philosophy, Chemistry and Arts 4, 1801, p.179 – 187.

[2] Zeng K., Zhang D.: Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in Energy and Combustion Science 36, 2010, p.307 – 326.

[3] Faraday M.: Experimental Researches in Electricity, Richard and John Edward Taylor, London, 1849.

[4] Nernst W.H.: Die elektromotorische Wirksamkeit der Ionen, Zeitschrif fuer physikalische Chemie, Stoechiometrie und Verwandtschftslehre 4, 129 – 181, 1889.

[5] W. Ostwald, Elektrochemie: Ihre Geschichte und Lehre, Veit, Leipzig, 1896.

[6] Hill R., Archer M.D.: Photoelectrochemical cells – a review of progress in the past 10 years, Journal of photochemistry and photobiology. A, Chemistry 51, 1990, p.45 – 54.

[7] Baykara S.Z.: Experimental solar water thermolysis, International Journal of Hydrogen Energy 29, 2004, p.1459 – 1469.

[8] Steinfled A.: Solar thermochemical production of hydrogen – a review, Solar Energy 78, 2005, p.603 – 615.

[9] Kapdan I.K., Kargi F.: Bio-hydrogen production from waste materials, Enzyme and Microbial Technology 38, 2006, p.569 – 582.

[10] Ni M., Leung D.Y.C., Leung M.K.H.: A review on reforming bio-ethanol for hydrogen production, International Journal of Hydrogen Energy 32, 2007, p.3238 – 3247.

[11] Manage M.N., Hodgson D., Milligan N., Simons S.J.R., Brett D.J.L.: A techno-economic appraisal of hydrogen generation and the case for solid oxide electrolyser cells, International Journal of Hydrogen Energy 36, 2011, p.5782 – 5796.

[12] Coughlin R.W., Farooque M.: Hydrogen production from coal, water and electrons, Nature 279, 1979, p.301 – 303.

[13] Bidrawn F., Kim G., Corre G., Irvine J.T.S., Vohs J.M.: Efficient reduction of CO2 in a Solid Oxide Electrolyzer, Electrochemical and Solid-State Letters 11, 2008, p.B167 – B170.

[14] Gahleitner G.: Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, International Journal of Hydrogen Energy 38, 2013, p.2039 – 2061.

[15] Carmo M., Fritz D.L., Mergel J., Stolten D.: A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy (2013), http://dx.doi.org/10.1016/j.ijhydene.2013.01.151

[16] Riedel T., Claeys M., Schulz H., Schaub G., Nam S-S., Jun K-W., Choi M-J., Kishan G., Lee K-W.: Comparative study of Fischer-Tropsch synthesis wit H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts, Applied Catalysis A: General 186, 1999, p.201 – 213.

[17] Graves C.R.: Recycling CO2 into Sustainable Hydrocarbon Fuels: Electrolysis of CO2 and H2O, PhD thesis, Columbia University 2012.

[18] Schlitzberger C., Brinkmeier N.O., Leithner R.: CO2 Capture in SOFC by Vapor Condensation and CH4 Production in SOEC Storing Excess Electricity, Chemical Engineering Technology 35, 2012, p.440 – 444.

[19] Ni M., Leung M.K.H., Leung D.Y.C.: Technological development of hydrogen production of solid oxide electrolyzer cell (SOEC), International Journal of Hydrogen Energy 33, 2008, p.2337 – 2354.

[20] Laguna-Bercero M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, Journal of Power Sources 203, 2012, p.4 – 16.

[21] Kargi F.: Microbiological coal desulphurization, Enzyme and Microbial Technology 4, 1982, p. 13 – 19.

[22] Blaszczuk A., Nowak W., Jagodzik S.: Effects of operating conditions on deNOx system efficiency in supercritical circulating fluidized bed boiler, Journal of Power Technologies 93, 2013, p. 1 – 8.

[23] Sciubidlo A., Nowak W.: Novel sorbents for flue gas purification, Journal of Power Technologies 92, 2012, p. 115 – 126.

[24] Wiciak G., Kotowicz J.: Experimental stand for CO2 membrane separation, Journal of Power Technologies 2011, 91, p. 171 – 178.

[25] Pascala S., Socolow R.: Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies, Science 305, 2004, p.968 – 972.

[26] Sheppard M.C., Socolow R.H.: Sustaining Fossil Fuel Use in a Carbon-Constrained World by Rapid Commercialization of Carbon Capture and Sequestration, American Institute of Chemical Engineers 53, 2007, p.3022 – 3028.

[27] Dincer I.: Renewable energy and sustainable development: a crucial review, Renewable and Sustainable Energy Reviews 4, 2000, p.157 – 175.

[28] Budzianowski W.M., Chasiak I.: Expansion of the biogas fuelled power plants in Germany during the 2001 – 2010 decade: Main sustainable conclusions for Poland, Journal of Power Technologies 91, 2011, p. 102 – 113.

[29] Krawczyk P., Badyda K.: Modelling of thermal and flow processes in a solar waste-water sludge dryer with supplementary heat supply from external sources, Journal of Power Technologies 91, 2011, p. 37 – 40.

[30] Moriarty P., Honnery D.: Intermittent renewable energy: The only future source of hydrogen?, International Journal of Hydrogen Energy 32, 2007, p.1616 – 1624.

[31] Vojvodic A., Norskov J.K.: Optimizing Perovskites for the Water-Splitting Reaction, Science 334, 2011, p.1355 – 1356.

[32] Milewski J., Swirski K., Santarelli M., Leone P.: Advanced Methods of Solid Oxide Fuel Cell Modeling, Springer, 2011.

[33] Milewski J., Swirski K.: Modelling the SOFC behaviours by artificial neural network, International Journal of Hydrogen Energy 34, 2009, p.5546 – 5553.

[34] 2010 key world energy statistics, International Energy Agency, 2010.

[35] Ridjan I., Van Mathiesen B., Connolly D., Duic N.: The feasibility of synthetic fuels in renewable energy systems, Energy (2013), http://dx.doi.org/10.1016/j.energy.2013.01.046.

[36] The Hydrogen Economy. Opportunities, Costs, Barriers, and R&D Needs, National Research Council and National Academy of Engineering, The National Academies Press, Washington, D.C. USA, 2004.

[37] Winsche W.E., Hoffman K.C., Salzano F.J.: Hydrogen: Its Future Role in the Nation’s Energy Economy, Science 180, 1973, p.1325 – 1332.

[38] Stolten D. (editor): Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

[39] Kakac S., Pramuanjaroenkij A., Zhou X.Y.: A review of numerical modelling of solid oxide fuel cells, International journal of hydrogen energy 32, 2007, p.761 – 786.

[40] Suwanwarangkul R., Croiset E., Fowler M.W., Douglas P.L., Entchev E., Douglas M.A.: Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode, Journal of Power Sources 122, 2003, p.9 – 18.

[41] Costamagna P., Costa P., Antonucci V.: Micro-modelling of solid oxide fuel cell electrodes, Electrochimica Acta 43, 1998, p.375 – 394.

[42] Chan S.H., Chen X.J., Khor K.A.: An electrolyte model for ceramic oxygen generator and solid oxide fuel cell, Journal of Power Sources 111, 2002, p.320 – 328.

[43] Comets O., Voorhees P.: Equilibrium Nucleation Calculation, unpublished. Available in: Barnett S.A.: Potential Performance of SOECs, http://indico.conferences.dtu.dk/getFile.py/access?resId=15&materialId=slides&confId=131

[44] Schouler E.J.L., Kleitz M., Forest E., Fernandez E., Fabry P.: Overpotential of H2-H2O, Ni/YSZ electrodes in steam electrolyzers, Solid State Ionics 5, 1981, p.559 – 562.

[45] Isenberg A.O.: Energy Conversion Via Solid Oxide Electrolyte Electrochemical Cells at High Temperatures, Solid State Ionics 3-4, 1981, p.431 – 437.

[46] Doenitz W., Schmidberger R., Steinheil E., Streicher R.: Hydrogen Production by High Temperature Electrolysis of Water Vapor, International Journal of Hydrogen Energy 5, 1980, p.55 – 63.

[47] Weissbart J., Smart W.H.: Study of Electrolytic Dissociation of CO2-H2O Using a Solid Oxide Electrolyte, Lockheed Missiles & Space Company report, 1967.

[48] Elikan L., Morris J.P., Wu C.K.: Development of Solid Electrolyte Carbon Dioxide and Water Reduction System for Oxygen Recovery, Westinghouse Electric Corporation report, 1972.

[49] Spacil H.S., Tedmon, Jr. C.S.: Electrochemical Dissociation of Water Vapor in Solid Oxide Electrolyte Cells: I. Thermodynamics and Cell Characteristics, Journal of Electrochemical Society 116, 1969, p.1618 – 1626.

[50] Ni M., Leung M.K.H., Leung D.Y.C.: Energy and Exergy analysis of hydrogen production by solid oxide steam electrolyzer plant, International Journal of Hydrogen Energy 32, 2007, p.4648 – 4660.

[51] Stoots C.M., O’Brien J.E., Herring J.S., Hartvigsen J.J.: Syngas Production via High-Temperature Coelectrolysis of Steam and Carbon Dioxide, Journal of Fuel Cell Science and Technology 6, 2009, p.011014-1 – 011014-12.

[52] O’Brien J.E., McKellar M.G., Stoots C.M., Herring J.S., Hawkes G.L.: Parametric study of large-scale production of syngas via high-temperature co-electrolysis, International Journal of Hydrogen Energy 34, 2009, p.4216 – 4226.

[53] Sigurvinsson J., Mansilla C., Lovera P., Werkoff F.: Can high temperature steam electrolysis function with geothermal heat, International Journal of Hydrogen Energy 32, 2007, p.1174 – 1182.

[54] Perdikaris N., Panopoulos K.D., Hofmann P., Spyrakis S., Kakaras E.: Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells, International Journal of Hydrogen Energy 35, 2010, p.2446 – 2456.

[55] Gopalan S., Mosleh M., Hartvigsen J.J., McConnell R.D.: Analysis of self-sustaining recuperative solid oxide electrolysis system, Journal of Power Sources 185, 2008, p.1328 – 1333.

[56] McKellar M.G., Sohal M.S., Stoots C.M., Mulloth L., Luna B., Abney M.B.: Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 production in a Closed-loop Atmosphere Revitalization System, INL report, 2010.

[57] Iora P., Chiesa P.: High efficiency process for the production of pure oxygen based on solid oxide fuel cell – solid oxide electrolyzer technology, Journal of Power Sources 190, 2009, p.408 – 416.

[58] Iora P., Taher M.A.A., Chiesa P., Brandon N.P.: A One Dimensional Solid Oxide Electrolyzer-Fuel Cell Stack Model And Its Application To The Analysis Of A High Efficiency System For Oxygen Production, Chemical Engineering Science, http://dx.doi.org/10.1016/j.ces.2012.06.032, 2012.

[59] Petipas F., Brisse A., Bouallou C.: Model-based behaviour of a high temperature electrolyser system operated at various loads, Journal of Power Sources (2013), http://dx.doi.org/10.1016.jpowsour.2013.03.027.

[60] Ni M., Leung M.K.H., Leung D.Y.C.: A modeling study on concentration overpotentials of a reversible solid oxide fuel cell, Journal of Power Sources 163, 2006, p.460 – 466.

[61] Ni M., Leung M.K.H., Leung D.Y.C.: An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production, Chemical Engineering Technology 29, 2006, p.636 – 642.

[62] Ni M., Leung M.K.H., Leung D.Y.C.: Parametric study of solid oxide steam electrolyzer for hydrogen production, International Journal of Hydrogen Energy 32, 2007, p.2305 – 2313.

[63] Gordin D., Deseure J., Brisse A., Zahid M., Ozil P.: Simulation of a high temperature electrolyzer, Journal of Applied Electrochemistry 40, 2010, p.933 – 941.

[64] Stempien J.P., Ding O.L., Sun Q., Chan S.H.: Energy and exergy analysis of Solid Oxide Electrolyzer Cell (SOEC) working as CO2 mitigation device, International Journal of Hydrogen Energy 37, 2012, p.14518 - 14527.

[65] Laurencin J., Kane D., Delette G., Deseure J., Lefebvre-Joud F.: Modeling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production, Journal of Power Sources 196, 2011, p.2080 – 2093.

[66] Ni M.: Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis, Chemical Engineering Journal 164, 2010, p.246 – 254.

[67] Green R.D., Liu C-C., Adler S.B.: Carbon dioxide reduction on gadolinia-doped ceria cathodes, Solid State Ionics 179, 2008, p.647 – 660.

[68] Grondin D., Deseure J., Ozil P., Chabriat J.-P., Grondin-Perez B., Brisse A.: Computing approach of cathodic process within solid oxide electrolysis cell: Experiments and continuum model validation, Journal of Power Sources 196, 2011, p.9561 – 9567.

[69] Ni M.: An electrochemical model for syngas production by co-electrolysis of H2O and CO2, Journal of Power Sources 202, 2012, p.209 – 216.

[70] Chan S.H., Khor K.A., Xia Z.T.: A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources 93, 2001, p.130 – 140.

[71] Ni M.: 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis, International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2012.01.072, 2012.

[72] Jin X., Xue X.: Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions, Journal of Power Sources 195, 2010, p.6652 – 6658.

[73] Jin X., Xue X.: Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations, International Journal of Hydrogen Energy 35, 2010, p.7321 – 7328.

[74] Hawkes G.L., O’Brien J.E., Stoots C.M., Herring J.S., Shahnam M.: CFD Model of a Planar Solid Oxide Electrolysis Cell for Hydrogen Production from Nuclear Energy, The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), October 2-6, 2005.

[75] Prinkey M., Shahnam M., Rogers W.A.: SOFC FLUENT Model Theory Guide and User Manual, Release Version 1.0, FLUENT, Inc., 2004.

[76] O’Brien J.E., Stoots C.M., Hawkes G.L.: Comparison of a One-Dimensional Model of a High-Temperature Solid-Oxide Electrolysis Stack with CFD and Experimental Results, 2005 ASME International Mechanical Engineering Congress and Exposition, 2005.

[77] Dumortier M., Sanchez J., Keddam M., Lacroix O.: Energy transport inside a three-phase electrode and application to a proton-conducting solid oxide electrolysis cell, International Journal of Hydrogen Energy 38, 2013, p.2610 – 2623.

[78] Costamagana P., Costa P., Antonucci V.: Micro-modeling of solid oxide fuel cell electrodes, Electrochimica Acta 43, 1998, p.375 – 394.

[79] Deng X., Petric A.: Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells, Journal of Power Sources 140, 2005, p.297 – 303.

[80] Chan S.H., Chen X.J., Khor K.A.: Cathode Micromodel of Solid Oxide Fuel Cell, Journal of Electrochemical Society 151, 2004, p.A164-A172.

[81] Chan S.H., Xia Z.T.: Anode Micro Model of Solid Oxide Fuel Cell, Journal of The Electrochemical Society 148, 2001, p.A388 – A394.

[82] Sohn S., Nam J.H., Jeon D.H., Kim C-J.: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels, International Journal of Hydrogen Energy 35, 2010, p.11890-11907.

[83] Ni M., Leung M.K.H., Leung D.Y.C.: Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production, Electrochimica Acta 52, 2007, p.6707 – 6718.

[84] Ni M., Leung M.K.H., Leung D.Y.C.: Parametric study of solid oxide fuel cell performance, Energy conversion & management 48, 2007, p.1525 – 1535.

[85] Grondin D., Deseure J., Ozil P., Chabriat J.-P., Grondin-Perez B., Brisse A.: Solid Oxide Electrolysis Cell 3D simulation using Artificial Neural Network for cathodic process description, Chemical Engineering Research and Design, doi:10.1016/j.cherd.2012.06.003, 2010.

[86] Shi Y., Luo Y., Cai N., Qian J., Wang S., Li W., Wang H.: Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells, Electrochimica Acta 88, 2013, p.644 – 653.

[87] Udagawa J., Aguiar P., Brandon N.P.: Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources 166, 2007, p.127 – 136.

[88] Udagawa J., Aguiar P., Brandon N.P.: Hydrogen production through steam electrolysis: model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources 180, 2008, p.46 – 55.

[89] Udagawa J., Aguiar P., Brandon N.P.: Hydrogen production through steam electrolysis: Control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources 180, 2008, p.354 – 364.

[90] Cai Q., Luna-Oritz E., Adjiman C.S., Brandon N.P.: The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model-Based Study, Fuel Cells 6, 2010, p.1114 – 1128.

[91] Aguiar P., Adjiman C.S., Brandon N.P.: Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: model-based steady-state performance, Journal of Power Sources 138, 2004, p.120 – 136.

[92] Aguiar P., Adjiman C.S., Brandon N.P.: Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II Model-based dynamic performance and control, Journal of Power Sources 147, 2005, p.136 – 147.

[93] Process Systems Enterprise Ltd., gPROMS Introductory User Guide, 2002.

[94] Demin A., Gorbova E., Tsiakaras P.: High temperature electrolyzer based on solid oxide co-ionic electrolyte: A theoretical model, Journal of Power Sources 171, 2007, p.205 – 211.

[95] Jacobsen T., Mogensen M.: The course of Oxygen Partial Pressure and Electric Potentials across an Oxide Electrolyte Cell, ECS Transactions 13, 2008, p.259 – 273.

[96] Bessler W.G., Gewies S., Vogler M.: A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta 53, 2007, p.1782 – 1800.

[97] Stempien J.P., Sun Q., Chan S.H.: Performance of power generation extension system based on Solid-Oxide Electrolyzer Cells under various design conditions, Energy (2013), http://dx.doi.org/10.1016/j.energy.2013.03.031

[98] Tietz F., Sebold D., Brisse A., Schefold J.: Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation, Journal of Power Sources 223, 2013, p.129 – 135.

[99] Kim J., Ji H-I., Dasari H.P., Shin D., Song H., Lee J-H., Kim B-K., Je H-J., Lee H-W., Yoon K.J.: Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization, International Journal of Hydrogen Energy 38, 2013, p.1225 – 1235.

[100] Zhang H., Su S., Chen X., Lin G., Chen J.: Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production, International Journal of Hydrogen Energy (2013), http://dx.doi.org/10.1016/j.ijhydene.2013.01.199.

[101] Patyk A., Bachmann T.M., Brisse A.: Life cycle assessment of H2 generation with high temperature electrolysis, International Journal of Hydrogen Energy 38, 2013, p.3865 – 3880.

[102] Zhang X., O’Brien J.E., O’Brien R.C., Hartvigsen J.J., Tao G., Housley G.K.: Improved durability of SOEC stacks for high temperature electrolysis, International Journal of Hydrogen Energy 38, 2013, p.20 – 28.

[103] Ebbesen S.D., Hogh J., Nielsem K.A., Nielsen J.U., Mogensen M.: Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis, International Journal of Hydrogen Energy 36, 2011, p.7363 – 7373.
Published
2013-09-09
How to Cite
STEMPIEN, Jan Pawel; SUN, Qiang; CHAN, Siew Hwa. Solid Oxide Electrolyzer Cell Modeling: A Review. Journal of Power Technologies, [S.l.], v. 93, n. 4, p. 216--246, sep. 2013. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/443>. Date accessed: 21 nov. 2024.
Section
Energy Conversion and Storage

Keywords

Solid Oxide Electrolyzer Cell (SOEC); Modelling of Solid Oxide Electrolyzer; Review of SOEC modelling; electrolysis

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.