Detection of anomalous consumers based on smart meter data
Abstract
The continuous smart grid development makes the advanced metering infrastructure an essential part of electricity management systems. Smart meters not only provide consumers with more economical and sustainable electricity consumption but also enable the energy supplier to identify suspicious behaviour or meter failure. In this work, a shape-based algorithm that indicates households with abnormal electricity consumption pattern within a given consumer group was proposed. The algorithm was developed under the assumption that the reason for unusual electricity consumption may not only be a meter failure or fraud, but also consumer’s individual preferences and lifestyle. In the presented methodology, five unsupervised anomaly detection methods were used: K Nearest Neighbors, Local Outlier Factor, Principal Component Analysis, Isolation Forest and Histogram Based Outlier Score. Two time series similarity measures were applied: basic Euclidean distance and Dynamic Time Warping, which allows finding the best alignment between two time series. The algorithm’s performance was tested with multiple parameter configurations on five different consumer groups. Additionally, an analysis of the individual types of anomalies and their detectability by the algorithm was performed.
Published
2022-01-28
How to Cite
KALETA, Joanna et al.
Detection of anomalous consumers based on smart meter data.
Journal of Power Technologies, [S.l.], v. 101, n. 4, p. 202–212, jan. 2022.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1779>. Date accessed: 22 dec. 2024.
Issue
Section
Electrical Engineering
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).