The investigation of cathode layer of Molten Carbonate Fuel Cell manufactured by using printing techniques
Abstract
The paper presents an investigation into the three cathode layers for the Molten Carbonate Fuel Cell that were obtained byusing printing techniques on various surfaces. The main differences during the manufacturing process were the substratesused when printing the layers: glass and two different sorts of paper. The cathodes were investigated at the theoretical andexperimental level. To identify the influence of the substrate used we built a mathematical model of the fuel cell, in which theinfluence is expressed by the conductivity of the layer. The paper demonstrates the possibility of using printing techniques tomanufacture Molten Carbonate Fuel Cell layers.References
[1] R. Roshandel, F. Golzar, M. Astaneh, Technical economic and environmental
optimization of combined heat and power systems based
on solid oxide fuel cell for a greenhouse case study, Energy Conversion
and Management 164 (2018) 144–156.
[2] J. Yan, F. Sun, S. Chou, U. Desideri, H. Li, P. Campana, R. Xiong,
Transformative innovations for a sustainable future – Part III, Applied
Energy 227 (2018) 1–6.
[3] J. Kotowicz, Ł. Bartela, K. Dubiel-Jurga´s, Analysis of Energy Storage
System with Distributed Hydrogen Production and Gas Turbine,
Archives of Thermodynamics 38 (4) (2017) 65–87.
[4] J. G. G. Clúa, R. J. Mantz, H. D. Battista, Optimal sizing of a gridassisted
wind-hydrogen system, Energy Conversion and Management
166 (2018) 402–408.
[5] M. Le´sko, W. Bujalski, Modeling of District Heating Networks for the
Purpose of Operational Optimization with Thermal Energy Storage,
Archives of Thermodynamics 38 (4) (2017) 139–163.
[6] R. Bartnik, Z. Buryn, A. Hnydiuk-Stefan, A. Juszczak, Methodology
and a Continuous Time Mathematical Model for Selecting the Optimum
Capacity of a Heat Accumulator Integrated with a CHP Plant, Energies
11 (5) (2018) 1240.
[7] L. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras,W. Bujalski,
Energy and exergy analysis of adiabatic compressed air energy
storage system, Energy 138 (2017) 12–18.
[8] A. Chmielewski, P. Piorkowski, K. Bogdzinski, P. Szulim, R. Guminski,
Test bench and model research of hybrid energy storage, JOURNAL
OF POWER TECHNOLOGIES 97 (5) (2017) 406–415.
[9] J. Yu, J. Fu, F. Guo, Y. Xie, Automatic testing system to evaluate the
energy efficiency of electric storage water heaters, Measurement and
Control 51 (7-8) (2018) 223–234.
[10] S. Fukuzumi, Y.-M. Lee, W. Nam, Fuel Production from Seawater
and Fuel Cells Using Seawater, ChemSusChem 10 (22) (2017) 4264–
4276.
[11] Y. Chen, F. Mojica, G. Li, P.-Y. A. Chuang, Experimental study and
analytical modeling of an alkaline water electrolysis cell, International
Journal of Energy Research 41 (14) (2017) 2365–2373.
[12] B. Hu, A. N. Aphale, C. Liang, S. J. Heo, M. A. Uddin, P. Singh,
Carbon Tolerant Double Site Doped Perovskite Cathodes for High-
Temperature Electrolysis Cells, ECS Transactions 78 (1) (2017) 3257–
3265.
[13] S. Lepszy, T. Chmielniak, P. Monka, Storage system for electricity obtained
from wind power plants using underground hydrogen reservoir,
JOURNAL OF POWER TECHNOLOGIES 97 (1) (2017) 61–68.
[14] C. Seibel, J.-W. Kuhlmann, Dynamic Water Electrolysis in Cross-
Sectoral Processes, Chemie Ingenieur Technik 90 (10) (2018) 1430–
1436.
[15] L. Barelli, G. Bidini, G. Cinti, Air variation in SOE: Stack experimental
study, International Journal of Hydrogen Energy 43 (26) (2018)
11655–11662.
[16] A. Z. Senseni, F. Meshkani, S. M. S. Fattahi, M. Rezaei, A theoretical
and experimental study of glycerol steam reforming over Rh/MgAl 2
O 4 catalysts, Energy Conversion and Management 154 (2017) 127–
137.
[17] Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, An integrated natural
gas power cycle using hydrogen and carbon fuel cells, Fuel 209
(2017) 76–84.
[18] G. Leonzio, State of art and perspectives about the production of
methanol dimethyl ether and syngas by carbon dioxide hydrogenation,
Journal of CO2 Utilization 27 (2018) 326–354.
[19] F. B. Juangsa, L. A. Prananto, Z. Mufrodi, A. Budiman, T. Oda, M. Aziz,
Highly energy-efficient combination of dehydrogenation of methylcyclohexane
and hydrogen-based power generation, Applied Energy 226
(2018) 31–38.
[20] V. Suboti´c, B. Stoeckl, V. Lawlor, J. Strasser, H. Schroettner,
C. Hochenauer, Towards a practical tool for online monitoring of solid
oxide fuel cell operation: An experimental study and application of advanced
data analysis approaches, Applied Energy 222 (2018) 748–
761.
[21] A. H. Davoodi, M. R. Pishvaie, Plant-Wide Control of an Integrated
Molten Carbonate Fuel Cell Plant, Journal of Electrochemical Energy
Conversion and Storage 15 (2) (2018) 021005.
[22] M. A. Azizi, J. Brouwer, Progress in solid oxide fuel cell-gas turbine hybrid
power systems: System design and analysis transient operation,
controls and optimization, Applied Energy 215 (2018) 237–289.
[23] M. Recalde, T. Woudstra, P. Aravind, Renewed sanitation technology:
A highly efficient faecal-sludge gasification–solid oxide fuel cell power
plant, Applied Energy 222 (2018) 515–529.
[24] J. Badur, M. Lema´ nski, T. Kowalczyk, P. Ziółkowski, S. Kornet, Zerodimensional
robust model of an SOFC with internal reforming for hybrid
energy cycles, Energy 158 (2018) 128–138.
[25] P. Jienkulsawad, D. Saebea, Y. Patcharavorachot, S. Kheawhom,
A. Arpornwichanop, Analysis of a solid oxide fuel cell and a molten
carbonate fuel cell integrated system with different configurations, International
Journal of Hydrogen Energy 43 (2) (2018) 932–942.
[26] I. Baikov, O. Smorodova, S. Kitaev, I. Yerilin, Temperature influence
on internal reforming and methane direct oxidation in solid oxide fuel
cells, Nanotechnologies in Construction: A Scientific Internet-Journal
10 (4) (2018) 120–137.
[27] M. Dillig, T. Plankenbühler, J. Karl, Thermal effects of planar high temperature
heat pipes in solid oxide cell stacks operated with internal
methane reforming, Journal of Power Sources 373 (2018) 139–149.
[28] S. Campanella, M. Bracconi, A. Donazzi, A fast regression model for
the interpretation of electrochemical impedance spectra of Intermediate
Temperature Solid Oxide Fuel Cells, Journal of Electroanalytical
Chemistry 823 (2018) 697–712.
[29] M. Wu, H. Zhang, T. Liao, Performance assessment of an integrated
molten carbonate fuel cell-thermoelectric devices hybrid system for
combined power and cooling purposes, International Journal of Hydrogen
Energy 42 (51) (2017) 30156–30165.
[30] W. M. Budzianowski, Assessment of Thermodynamic Efficiency of
Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid
Absorption, in: Green Energy and Technology, Springer International
Publishing, 2016, pp. 13–26.
[31] D. Bonaventura, R. Chacartegui, J. Valverde, J. Becerra, C. Ortiz,
J. Lizana, Dry carbonate process for CO 2 capture and storage: Integration
with solar thermal power, Renewable and Sustainable Energy
Reviews 82 (2018) 1796–1812.
[32] R. Carapellucci, R. Cipollone, D. D. Battista, Modeling and characterization
of molten carbonate fuel cell for electricity generation and
carbon dioxide capture, Energy Procedia 126 (2017) 477–484.
[33] S. K. Das, Towards enhancement of carbon capture by Molten Carbonate
Fuel Cell through controlled thermodiffusion, International Journal
of Heat and Mass Transfer 127 (2018) 296–302.
[34] Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, A power cycle of
natural gas decarbonization and dual fuel cells with inherent 100% carbon
capture, International Journal of Hydrogen Energy 43 (39) (2018)
18444–18451.
[35] J. P. Perez-Trujillo, F. Elizalde-Blancas, M. D. Pietra, S. J. McPhail, A
numerical and experimental comparison of a single reversible molten
carbonate cell operating in fuel cell mode and electrolysis mode, Applied
Energy 226 (2018) 1037–1055.
[36] P. Fragiacomo, G. D. Lorenzo, O. Corigliano, Performance Analysis
of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench
under a CO2-H2O Feed Stream, Energies 11 (9) (2018) 2276.
[37] and, Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks
Power Generation System, Energies 10 (12) (2017) 2103.
[38] J. Kupecki, K. Motyli ´ nski, M. Skrzypkiewicz, M. Wierzbicki, Y. Naumovich,
Preliminary Electrochemical Characterization of Anode Supported
Solid Oxide Cell (AS-SOC) Produced in the Institute of Power
Engineering Operated in Electrolysis Mode (SOEC), Archives of Thermodynamics
38 (4) (2017) 53–63.
[39] Y. Zheng, Y. Luo, Y. Shi, N. Cai, Dynamic Processes of Mode Switching
in Reversible Solid Oxide Fuel Cells, Journal of Energy Engineering
143 (6) (2017) 04017057.
[40] O. Siddiqui, I. Dincer, Analysis and performance assessment of a new
solar-based multigeneration system integrated with ammonia fuel cell
and solid oxide fuel cell-gas turbine combined cycle, Journal of Power
Sources 370 (2017) 138–154.
[41] N. Danilov, A. Tarutin, J. Lyagaeva, E. Pikalova, A. Murashkina,
D. Medvedev, M. Patrakeev, A. Demin, Affinity of YBaCo 4 O 7+ -
based layered cobaltites with protonic conductors of cerate-zirconate
family, Ceramics International 43 (17) (2017) 15418–15423.
[42] M. L. Ferrari, A. Sorce, A. F. Massardo, Hardware-in-the-Loop Operations
With an Emulator Rig for SOFC Hybrid Systems, in: Volume
3: Coal Biomass and Alternative Fuels, Cycle Innovations, Electric
Power, Industrial and Cogeneration Applications, Organic Rankine Cycle
Power Systems, ASME, 2017.
[43] K. Motylinski, Y. Naumovich, Numerical model for evaluation of the
effects of carbon deposition on the performance of 1 kW SOFC stack
– a proposal, E3S Web of Conferences 14 (2017) 01043.
[44] R. Ma, C. Liu, E. Breaz, P. Briois, F. Gao, Numerical stiffness study of
multi-physical solid oxide fuel cell model for real-time simulation applications,
Applied Energy 226 (2018) 570–581.
[45] Z. Ye, X. Zhang, W. Li, G. Su, J. Chen, Optimum operation states
and parametric selection criteria of a high temperature fuel cellthermoradiative
cell system, Energy Conversion and Management 173
(2018) 470–475.
[46] G. Accardo, D. Frattini, S. P. Yoon, H. C. Ham, S.W. Nam, Performance
and properties of anodes reinforced with metal oxide nanoparticles for
molten carbonate fuel cells, Journal of Power Sources 370 (2017) 52–
60.
[47] M. E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison
of anode-supported cathode-supported, and electrolyte-supported
SOFCs, International Journal of Hydrogen Energy 43 (32) (2018)
15521–15530.
[48] T. A. Prokop, K. Berent, H. Iwai, J. S. Szmyd, G. Brus, A threedimensional
heterogeneity analysis of electrochemical energy conversion
in SOFC anodes using electron nanotomography and mathematical
modeling, International Journal of Hydrogen Energy 43 (21) (2018)
10016–10030.
[49] A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I. Petra, F. Begum, S. G.
Eriksson, A. K. Azad, Nanomaterials for solid oxide fuel cells: A review,
Renewable and Sustainable Energy Reviews 82 (2018) 353–368.
[50] K. Dzierzgowski, S. Wachowski, W. Gojtowska, I. Lewandowska,
P. Jasi ´ nski, M. Gazda, A. Mielewczyk-Gry´ n, Praseodymium substituted
lanthanum orthoniobate: Electrical and structural properties, Ceramics
International 44 (7) (2018) 8210–8215.
[51] L. J. M. J. Blomen, M. N. Mugerwa (Eds.), Fuel Cell Systems, Springer
US, 1993.
[52] F. RodrÍguez, P. Sebastian, O. Solorza, R. PÉrez, Mo–Ru–W chalcogenide
electrodes prepared by chemical synthesis and screen printing
for fuel cell applications, International Journal of Hydrogen Energy
23 (11) (1998) 1031–1035.
[53] A. D. Taylor, E. Y. Kim, V. P. Humes, J. Kizuka, L. T. Thompson, Inkjet
printing of carbon supported platinum 3-D catalyst layers for use in fuel
cells, Journal of Power Sources 171 (1) (2007) 101–106.
[54] N. P. Kulkarni, Design and development of manufacturing methods for
manufacturing of PEM fuel cell MEA’s.
[55] M. R. Somalu, N. P. Brandon, Rheological Studies of Nickel/Scandia-
Stabilized-Zirconia Screen Printing Inks for Solid Oxide Fuel Cell Anode
Fabrication, Journal of the American Ceramic Society 95 (4)
(2011) 1220–1228.
[56] M. Somalu, V. Yufit, I. Shapiro, P. Xiao, N. Brandon, The impact of ink
rheology on the properties of screen-printed solid oxide fuel cell anodes,
International Journal of Hydrogen Energy 38 (16) (2013) 6789–
6801.
[57] R. Baumann, A. Willert, F. Siegel, A. Kohl, Method for producing catalyst
layers for fuel cells, uS Patent App. 13/322,472 (may 24 2012).
[58] W.Wang, S. Chen, J. Li, W.Wang, Fabrication of catalyst coated membrane
with screen printing method in a proton exchange membrane
fuel cell, International Journal of Hydrogen Energy 40 (13) (2015)
4649–4658.
[59] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, Screenprinting
inks for the fabrication of solid oxide fuel cell films: A review,
Renewable and Sustainable Energy Reviews 75 (2017) 426–439.
[60] A. Jayakumar, S. Singamneni, M. Ramos, A. Al-Jumaily, S. Pethaiah,
Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel
3D Printing Technique and Critical Assessment of the Challenges Encountered,
Materials 10 (7) (2017) 796.
[61] A. Nadar, A. M. Banerjee, M. Pai, R. Pai, S. S. Meena, R. Tewari,
A. Tripathi, Catalytic properties of dispersed iron oxides Fe2O3/MO2
(M = Zr Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of
support, International Journal of Hydrogen Energy 43 (1) (2018) 37–
52.
[62] E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling
of molten carbonate fuel cells: Effects of cathode water and electrode
materials, Journal of Power Sources 330 (2016) 18–27.
[63] M. Peksen, Safe heating-up of a full scale SOFC system using 3D
multiphysics modelling optimisation, International Journal of Hydrogen
Energy 43 (1) (2018) 354–362.
[64] E. El-Hay, M. El-Hameed, A. El-Fergany, Steady-state and dynamic
models of solid oxide fuel cells based on Satin Bowerbird Optimizer, International
Journal of Hydrogen Energy 43 (31) (2018) 14751–14761.
[65] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model
of Molten Carbonate Fuel Cell: A proposal, International Journal of
Hydrogen Energy 38 (26) (2013) 11565–11575.
[66] M. Ławry´nczuk, Towards Reduced-Order Models of Solid Oxide Fuel
Cell, Complexity 2018 (2018) 1–18.
[67] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication
of bulk heterojunction plastic solar cells by screen printing, Applied
Physics Letters 79 (18) (2001) 2996–2998.
optimization of combined heat and power systems based
on solid oxide fuel cell for a greenhouse case study, Energy Conversion
and Management 164 (2018) 144–156.
[2] J. Yan, F. Sun, S. Chou, U. Desideri, H. Li, P. Campana, R. Xiong,
Transformative innovations for a sustainable future – Part III, Applied
Energy 227 (2018) 1–6.
[3] J. Kotowicz, Ł. Bartela, K. Dubiel-Jurga´s, Analysis of Energy Storage
System with Distributed Hydrogen Production and Gas Turbine,
Archives of Thermodynamics 38 (4) (2017) 65–87.
[4] J. G. G. Clúa, R. J. Mantz, H. D. Battista, Optimal sizing of a gridassisted
wind-hydrogen system, Energy Conversion and Management
166 (2018) 402–408.
[5] M. Le´sko, W. Bujalski, Modeling of District Heating Networks for the
Purpose of Operational Optimization with Thermal Energy Storage,
Archives of Thermodynamics 38 (4) (2017) 139–163.
[6] R. Bartnik, Z. Buryn, A. Hnydiuk-Stefan, A. Juszczak, Methodology
and a Continuous Time Mathematical Model for Selecting the Optimum
Capacity of a Heat Accumulator Integrated with a CHP Plant, Energies
11 (5) (2018) 1240.
[7] L. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras,W. Bujalski,
Energy and exergy analysis of adiabatic compressed air energy
storage system, Energy 138 (2017) 12–18.
[8] A. Chmielewski, P. Piorkowski, K. Bogdzinski, P. Szulim, R. Guminski,
Test bench and model research of hybrid energy storage, JOURNAL
OF POWER TECHNOLOGIES 97 (5) (2017) 406–415.
[9] J. Yu, J. Fu, F. Guo, Y. Xie, Automatic testing system to evaluate the
energy efficiency of electric storage water heaters, Measurement and
Control 51 (7-8) (2018) 223–234.
[10] S. Fukuzumi, Y.-M. Lee, W. Nam, Fuel Production from Seawater
and Fuel Cells Using Seawater, ChemSusChem 10 (22) (2017) 4264–
4276.
[11] Y. Chen, F. Mojica, G. Li, P.-Y. A. Chuang, Experimental study and
analytical modeling of an alkaline water electrolysis cell, International
Journal of Energy Research 41 (14) (2017) 2365–2373.
[12] B. Hu, A. N. Aphale, C. Liang, S. J. Heo, M. A. Uddin, P. Singh,
Carbon Tolerant Double Site Doped Perovskite Cathodes for High-
Temperature Electrolysis Cells, ECS Transactions 78 (1) (2017) 3257–
3265.
[13] S. Lepszy, T. Chmielniak, P. Monka, Storage system for electricity obtained
from wind power plants using underground hydrogen reservoir,
JOURNAL OF POWER TECHNOLOGIES 97 (1) (2017) 61–68.
[14] C. Seibel, J.-W. Kuhlmann, Dynamic Water Electrolysis in Cross-
Sectoral Processes, Chemie Ingenieur Technik 90 (10) (2018) 1430–
1436.
[15] L. Barelli, G. Bidini, G. Cinti, Air variation in SOE: Stack experimental
study, International Journal of Hydrogen Energy 43 (26) (2018)
11655–11662.
[16] A. Z. Senseni, F. Meshkani, S. M. S. Fattahi, M. Rezaei, A theoretical
and experimental study of glycerol steam reforming over Rh/MgAl 2
O 4 catalysts, Energy Conversion and Management 154 (2017) 127–
137.
[17] Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, An integrated natural
gas power cycle using hydrogen and carbon fuel cells, Fuel 209
(2017) 76–84.
[18] G. Leonzio, State of art and perspectives about the production of
methanol dimethyl ether and syngas by carbon dioxide hydrogenation,
Journal of CO2 Utilization 27 (2018) 326–354.
[19] F. B. Juangsa, L. A. Prananto, Z. Mufrodi, A. Budiman, T. Oda, M. Aziz,
Highly energy-efficient combination of dehydrogenation of methylcyclohexane
and hydrogen-based power generation, Applied Energy 226
(2018) 31–38.
[20] V. Suboti´c, B. Stoeckl, V. Lawlor, J. Strasser, H. Schroettner,
C. Hochenauer, Towards a practical tool for online monitoring of solid
oxide fuel cell operation: An experimental study and application of advanced
data analysis approaches, Applied Energy 222 (2018) 748–
761.
[21] A. H. Davoodi, M. R. Pishvaie, Plant-Wide Control of an Integrated
Molten Carbonate Fuel Cell Plant, Journal of Electrochemical Energy
Conversion and Storage 15 (2) (2018) 021005.
[22] M. A. Azizi, J. Brouwer, Progress in solid oxide fuel cell-gas turbine hybrid
power systems: System design and analysis transient operation,
controls and optimization, Applied Energy 215 (2018) 237–289.
[23] M. Recalde, T. Woudstra, P. Aravind, Renewed sanitation technology:
A highly efficient faecal-sludge gasification–solid oxide fuel cell power
plant, Applied Energy 222 (2018) 515–529.
[24] J. Badur, M. Lema´ nski, T. Kowalczyk, P. Ziółkowski, S. Kornet, Zerodimensional
robust model of an SOFC with internal reforming for hybrid
energy cycles, Energy 158 (2018) 128–138.
[25] P. Jienkulsawad, D. Saebea, Y. Patcharavorachot, S. Kheawhom,
A. Arpornwichanop, Analysis of a solid oxide fuel cell and a molten
carbonate fuel cell integrated system with different configurations, International
Journal of Hydrogen Energy 43 (2) (2018) 932–942.
[26] I. Baikov, O. Smorodova, S. Kitaev, I. Yerilin, Temperature influence
on internal reforming and methane direct oxidation in solid oxide fuel
cells, Nanotechnologies in Construction: A Scientific Internet-Journal
10 (4) (2018) 120–137.
[27] M. Dillig, T. Plankenbühler, J. Karl, Thermal effects of planar high temperature
heat pipes in solid oxide cell stacks operated with internal
methane reforming, Journal of Power Sources 373 (2018) 139–149.
[28] S. Campanella, M. Bracconi, A. Donazzi, A fast regression model for
the interpretation of electrochemical impedance spectra of Intermediate
Temperature Solid Oxide Fuel Cells, Journal of Electroanalytical
Chemistry 823 (2018) 697–712.
[29] M. Wu, H. Zhang, T. Liao, Performance assessment of an integrated
molten carbonate fuel cell-thermoelectric devices hybrid system for
combined power and cooling purposes, International Journal of Hydrogen
Energy 42 (51) (2017) 30156–30165.
[30] W. M. Budzianowski, Assessment of Thermodynamic Efficiency of
Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid
Absorption, in: Green Energy and Technology, Springer International
Publishing, 2016, pp. 13–26.
[31] D. Bonaventura, R. Chacartegui, J. Valverde, J. Becerra, C. Ortiz,
J. Lizana, Dry carbonate process for CO 2 capture and storage: Integration
with solar thermal power, Renewable and Sustainable Energy
Reviews 82 (2018) 1796–1812.
[32] R. Carapellucci, R. Cipollone, D. D. Battista, Modeling and characterization
of molten carbonate fuel cell for electricity generation and
carbon dioxide capture, Energy Procedia 126 (2017) 477–484.
[33] S. K. Das, Towards enhancement of carbon capture by Molten Carbonate
Fuel Cell through controlled thermodiffusion, International Journal
of Heat and Mass Transfer 127 (2018) 296–302.
[34] Q. Zhuang, P. Geddis, A. Runstedtler, B. Clements, A power cycle of
natural gas decarbonization and dual fuel cells with inherent 100% carbon
capture, International Journal of Hydrogen Energy 43 (39) (2018)
18444–18451.
[35] J. P. Perez-Trujillo, F. Elizalde-Blancas, M. D. Pietra, S. J. McPhail, A
numerical and experimental comparison of a single reversible molten
carbonate cell operating in fuel cell mode and electrolysis mode, Applied
Energy 226 (2018) 1037–1055.
[36] P. Fragiacomo, G. D. Lorenzo, O. Corigliano, Performance Analysis
of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench
under a CO2-H2O Feed Stream, Energies 11 (9) (2018) 2276.
[37] and, Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks
Power Generation System, Energies 10 (12) (2017) 2103.
[38] J. Kupecki, K. Motyli ´ nski, M. Skrzypkiewicz, M. Wierzbicki, Y. Naumovich,
Preliminary Electrochemical Characterization of Anode Supported
Solid Oxide Cell (AS-SOC) Produced in the Institute of Power
Engineering Operated in Electrolysis Mode (SOEC), Archives of Thermodynamics
38 (4) (2017) 53–63.
[39] Y. Zheng, Y. Luo, Y. Shi, N. Cai, Dynamic Processes of Mode Switching
in Reversible Solid Oxide Fuel Cells, Journal of Energy Engineering
143 (6) (2017) 04017057.
[40] O. Siddiqui, I. Dincer, Analysis and performance assessment of a new
solar-based multigeneration system integrated with ammonia fuel cell
and solid oxide fuel cell-gas turbine combined cycle, Journal of Power
Sources 370 (2017) 138–154.
[41] N. Danilov, A. Tarutin, J. Lyagaeva, E. Pikalova, A. Murashkina,
D. Medvedev, M. Patrakeev, A. Demin, Affinity of YBaCo 4 O 7+ -
based layered cobaltites with protonic conductors of cerate-zirconate
family, Ceramics International 43 (17) (2017) 15418–15423.
[42] M. L. Ferrari, A. Sorce, A. F. Massardo, Hardware-in-the-Loop Operations
With an Emulator Rig for SOFC Hybrid Systems, in: Volume
3: Coal Biomass and Alternative Fuels, Cycle Innovations, Electric
Power, Industrial and Cogeneration Applications, Organic Rankine Cycle
Power Systems, ASME, 2017.
[43] K. Motylinski, Y. Naumovich, Numerical model for evaluation of the
effects of carbon deposition on the performance of 1 kW SOFC stack
– a proposal, E3S Web of Conferences 14 (2017) 01043.
[44] R. Ma, C. Liu, E. Breaz, P. Briois, F. Gao, Numerical stiffness study of
multi-physical solid oxide fuel cell model for real-time simulation applications,
Applied Energy 226 (2018) 570–581.
[45] Z. Ye, X. Zhang, W. Li, G. Su, J. Chen, Optimum operation states
and parametric selection criteria of a high temperature fuel cellthermoradiative
cell system, Energy Conversion and Management 173
(2018) 470–475.
[46] G. Accardo, D. Frattini, S. P. Yoon, H. C. Ham, S.W. Nam, Performance
and properties of anodes reinforced with metal oxide nanoparticles for
molten carbonate fuel cells, Journal of Power Sources 370 (2017) 52–
60.
[47] M. E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison
of anode-supported cathode-supported, and electrolyte-supported
SOFCs, International Journal of Hydrogen Energy 43 (32) (2018)
15521–15530.
[48] T. A. Prokop, K. Berent, H. Iwai, J. S. Szmyd, G. Brus, A threedimensional
heterogeneity analysis of electrochemical energy conversion
in SOFC anodes using electron nanotomography and mathematical
modeling, International Journal of Hydrogen Energy 43 (21) (2018)
10016–10030.
[49] A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I. Petra, F. Begum, S. G.
Eriksson, A. K. Azad, Nanomaterials for solid oxide fuel cells: A review,
Renewable and Sustainable Energy Reviews 82 (2018) 353–368.
[50] K. Dzierzgowski, S. Wachowski, W. Gojtowska, I. Lewandowska,
P. Jasi ´ nski, M. Gazda, A. Mielewczyk-Gry´ n, Praseodymium substituted
lanthanum orthoniobate: Electrical and structural properties, Ceramics
International 44 (7) (2018) 8210–8215.
[51] L. J. M. J. Blomen, M. N. Mugerwa (Eds.), Fuel Cell Systems, Springer
US, 1993.
[52] F. RodrÍguez, P. Sebastian, O. Solorza, R. PÉrez, Mo–Ru–W chalcogenide
electrodes prepared by chemical synthesis and screen printing
for fuel cell applications, International Journal of Hydrogen Energy
23 (11) (1998) 1031–1035.
[53] A. D. Taylor, E. Y. Kim, V. P. Humes, J. Kizuka, L. T. Thompson, Inkjet
printing of carbon supported platinum 3-D catalyst layers for use in fuel
cells, Journal of Power Sources 171 (1) (2007) 101–106.
[54] N. P. Kulkarni, Design and development of manufacturing methods for
manufacturing of PEM fuel cell MEA’s.
[55] M. R. Somalu, N. P. Brandon, Rheological Studies of Nickel/Scandia-
Stabilized-Zirconia Screen Printing Inks for Solid Oxide Fuel Cell Anode
Fabrication, Journal of the American Ceramic Society 95 (4)
(2011) 1220–1228.
[56] M. Somalu, V. Yufit, I. Shapiro, P. Xiao, N. Brandon, The impact of ink
rheology on the properties of screen-printed solid oxide fuel cell anodes,
International Journal of Hydrogen Energy 38 (16) (2013) 6789–
6801.
[57] R. Baumann, A. Willert, F. Siegel, A. Kohl, Method for producing catalyst
layers for fuel cells, uS Patent App. 13/322,472 (may 24 2012).
[58] W.Wang, S. Chen, J. Li, W.Wang, Fabrication of catalyst coated membrane
with screen printing method in a proton exchange membrane
fuel cell, International Journal of Hydrogen Energy 40 (13) (2015)
4649–4658.
[59] M. R. Somalu, A. Muchtar, W. R. W. Daud, N. P. Brandon, Screenprinting
inks for the fabrication of solid oxide fuel cell films: A review,
Renewable and Sustainable Energy Reviews 75 (2017) 426–439.
[60] A. Jayakumar, S. Singamneni, M. Ramos, A. Al-Jumaily, S. Pethaiah,
Manufacturing the Gas Diffusion Layer for PEM Fuel Cell Using a Novel
3D Printing Technique and Critical Assessment of the Challenges Encountered,
Materials 10 (7) (2017) 796.
[61] A. Nadar, A. M. Banerjee, M. Pai, R. Pai, S. S. Meena, R. Tewari,
A. Tripathi, Catalytic properties of dispersed iron oxides Fe2O3/MO2
(M = Zr Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of
support, International Journal of Hydrogen Energy 43 (1) (2018) 37–
52.
[62] E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling
of molten carbonate fuel cells: Effects of cathode water and electrode
materials, Journal of Power Sources 330 (2016) 18–27.
[63] M. Peksen, Safe heating-up of a full scale SOFC system using 3D
multiphysics modelling optimisation, International Journal of Hydrogen
Energy 43 (1) (2018) 354–362.
[64] E. El-Hay, M. El-Hameed, A. El-Fergany, Steady-state and dynamic
models of solid oxide fuel cells based on Satin Bowerbird Optimizer, International
Journal of Hydrogen Energy 43 (31) (2018) 14751–14761.
[65] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model
of Molten Carbonate Fuel Cell: A proposal, International Journal of
Hydrogen Energy 38 (26) (2013) 11565–11575.
[66] M. Ławry´nczuk, Towards Reduced-Order Models of Solid Oxide Fuel
Cell, Complexity 2018 (2018) 1–18.
[67] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, Fabrication
of bulk heterojunction plastic solar cells by screen printing, Applied
Physics Letters 79 (18) (2001) 2996–2998.
Published
2019-06-15
How to Cite
MILEWSKI, Jaroslaw et al.
The investigation of cathode layer of Molten Carbonate Fuel Cell manufactured by using printing techniques.
Journal of Power Technologies, [S.l.], v. 99, n. 2, p. 82–91, june 2019.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1533>. Date accessed: 21 nov. 2024.
Issue
Section
Fuel Cells and Hydrogen
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).