COMPARISON BETWEEN DIFFERENT DESIGN CONCEPTS OF RECEIVERS/REACTORS FOR THERMOCHEMICAL CONVERSION OF CONCENTRATED SOLAR ENERGY
Abstract
In this paper, a zero-order mathematical model based on first law analysis of the Thermochemical Energy Conversion (TCEC) process of concentrated solar energy have been developed. The model assumptions consider the general case for which the receiver/reactor is the direct volumetric absorption and/or indirect receiver/reactor. The thermal decomposition of a single chemical species and endothermic reversible chemical reaction is considered as the reaction system. A qualitative comparison of the model results gave a satisfactory agreement with selected experimental results. The proposed model was used to compare the general thermochemical behavior of the three general types of receivers/reactors proposed for the TCEC process operating in both continuous and in the discontinuous flow regimes. Comparison of the thermal characteristics of the TCEC process with other traditional conversion processes was also performed. Finally, conclusions were drawn to assist any further development and understanding of the TCEC process.
How to Cite
AMHALHEL, Gamal; FURMAŃSKI, Piotr.
COMPARISON BETWEEN DIFFERENT DESIGN CONCEPTS OF RECEIVERS/REACTORS FOR THERMOCHEMICAL CONVERSION OF CONCENTRATED SOLAR ENERGY.
Journal of Power Technologies, [S.l.], v. 90, mar. 2011.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/149>. Date accessed: 22 dec. 2024.
Issue
Section
Interdisciplinary
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).