Hybrid techology of flue gas denitrification system. Part 1—Preliminary studies of flow turbulence and pressure drop in the elements of rotary air heater baskets
Abstract
The paper presents the results of physical and numerical tests of fluid flow through the filling of a rotary air heater (RAH). Alaboratory-scale test bench was used to measure flow resistance across a fragment of a RAH. Seven types of RAH moduleswere tested - one steel and six ceramic (as catalyst carriers). The relationship between pressure drop and velocity (Renumber) of flow was used to deduce the flow characteristics for each of the RAH modules tested.Measurements carried out on the test bench were used to create a substitute mathematical model, which in the CFD codeAnsys Fluent enables accurate mapping of pressure drop and velocity distribution full fit to the real flow conditions.Numerical calculations were used to validate measurements for an alternative model, to create guidelines for the substitutemodel of the porous zone and to optimize application checking the correctness of created guidelines for simplified calculations.Flow simulations were performed for various turbulence models. Results were compared to the test-bench measurements todetermine the best adjustment for this specific type of reverse flow inside the air duct.This research is part of an ongoing research project: “Hybrid Technology of Flue Gas Denitrification System in Steam andHot Water Boilers”. The aim of the project is to investigate the concept of using rotary air heater fillings as a carrier for catalyticcoatings to reduce nitrogen oxides. In the further part of the research project, the replacement porous zone substitute modelswill make it possible to precisely calculate the entire RAH and will significantly reduce the calculation time as the basis forfurther project work.References
[1] C. Directive, Directive 2010/75/eu of the european parliament and of
the council, Off. J. Eur. Union L 334 (2010) 17–119.
[2] Decision (eu) 2017/1442 of 31 july 2017 establishing best available
techniques (bat) conclusions.
[3] M. Kotter, H.-G. Lintz, T. Turek, Katalytische stickoxid-reduktion in
einem rotierenden wärmeübertrager, Chemie Ingenieur Technik 64 (5)
(1992) 446–448.
[4] K. Veser, Regenerativ-wärmetauscher in der umwelttechnik, betriebserfahrungen
mit dem gasvorwärmer an nassentschwefelungsanlagen,
mit pilot-anlagen denox-gerechter luft-und gasvorwärmer an entstickungsanlagen
und anordnungskriterien für solche; entwicklungsstand
des denox-luvo/denox-gavo, VGB Kraftwerkstechnik 66 (12)
(1986) 1123–1130.
[5] Scandenox combined sncr and scr,
http://www.scandenox.dk/kontakt1.
[6] M. J. FRANK, H. GUTBERLET, J. BRANDENSTEIN, Betrieb
von rauchgas-entstickungsanlagen mit denox-katalysatoren: Ein
übersichtsbeitrag über technologie und betriebspraxis von denoxkatalysatoren,
VGB powertech 86 (4) (2006) 72–77.
[7] B. K. Gullett, P. W. Groff, M. L. Lin, J. M. Chen, Nox removal with combined
selective catalytic reduction and selective noncatalytic reduction:
pilot-scale test results, Air & waste 44 (10) (1994) 1188–1194.
[8] R. Wejkowski, W. Wojnar, Selective catalytic reduction in a rotary air
heater (rah-scr), Energy 145 (2018) 367–373.
[9] M. Kuła˙zy´ nski, M. Pronobis, A. Walewski, R. Wejkowski, W. Wojnar,
Selektywna redukcja katalityczna (scr) tlenków azotu w regeneracyjnym
obrotowym podgrzewaczu powietrza (selective catalytic reduction
scr in rotary air heater - in polish), Rynek Energii (6) (2008) 82–87.
[10] F. A. Anwar-ul Haque, S. Yamada, S. R. Chaudhry, Assessment of turbulence
models for turbulent flow over backward facing step, in: Proceedings
of the World Congress on Engineering, Vol. 2, 2007, pp. 2–7.
[11] P. P. Araujo, A. L. T. Rezende, Comparison of turbulence models in the
flow over a backward facing step, International Journal of Engineering
Research and Science 3 (1).
[12] D. Jehad, G. Hashim, A. Zarzoor, C. N. Azwadi, Numerical study of turbulent
flow over backward-facing step with different turbulence models,
Journal of Advanced Research Design 4 (1) (2015) 20–27.
[13] M. K. Isman, Investigation of inlet effects on backward-facing step flow
prediction, Transactions of the Canadian Society for Mechanical Engineering
40 (3) (2016) 317–329.
the council, Off. J. Eur. Union L 334 (2010) 17–119.
[2] Decision (eu) 2017/1442 of 31 july 2017 establishing best available
techniques (bat) conclusions.
[3] M. Kotter, H.-G. Lintz, T. Turek, Katalytische stickoxid-reduktion in
einem rotierenden wärmeübertrager, Chemie Ingenieur Technik 64 (5)
(1992) 446–448.
[4] K. Veser, Regenerativ-wärmetauscher in der umwelttechnik, betriebserfahrungen
mit dem gasvorwärmer an nassentschwefelungsanlagen,
mit pilot-anlagen denox-gerechter luft-und gasvorwärmer an entstickungsanlagen
und anordnungskriterien für solche; entwicklungsstand
des denox-luvo/denox-gavo, VGB Kraftwerkstechnik 66 (12)
(1986) 1123–1130.
[5] Scandenox combined sncr and scr,
http://www.scandenox.dk/kontakt1.
[6] M. J. FRANK, H. GUTBERLET, J. BRANDENSTEIN, Betrieb
von rauchgas-entstickungsanlagen mit denox-katalysatoren: Ein
übersichtsbeitrag über technologie und betriebspraxis von denoxkatalysatoren,
VGB powertech 86 (4) (2006) 72–77.
[7] B. K. Gullett, P. W. Groff, M. L. Lin, J. M. Chen, Nox removal with combined
selective catalytic reduction and selective noncatalytic reduction:
pilot-scale test results, Air & waste 44 (10) (1994) 1188–1194.
[8] R. Wejkowski, W. Wojnar, Selective catalytic reduction in a rotary air
heater (rah-scr), Energy 145 (2018) 367–373.
[9] M. Kuła˙zy´ nski, M. Pronobis, A. Walewski, R. Wejkowski, W. Wojnar,
Selektywna redukcja katalityczna (scr) tlenków azotu w regeneracyjnym
obrotowym podgrzewaczu powietrza (selective catalytic reduction
scr in rotary air heater - in polish), Rynek Energii (6) (2008) 82–87.
[10] F. A. Anwar-ul Haque, S. Yamada, S. R. Chaudhry, Assessment of turbulence
models for turbulent flow over backward facing step, in: Proceedings
of the World Congress on Engineering, Vol. 2, 2007, pp. 2–7.
[11] P. P. Araujo, A. L. T. Rezende, Comparison of turbulence models in the
flow over a backward facing step, International Journal of Engineering
Research and Science 3 (1).
[12] D. Jehad, G. Hashim, A. Zarzoor, C. N. Azwadi, Numerical study of turbulent
flow over backward-facing step with different turbulence models,
Journal of Advanced Research Design 4 (1) (2015) 20–27.
[13] M. K. Isman, Investigation of inlet effects on backward-facing step flow
prediction, Transactions of the Canadian Society for Mechanical Engineering
40 (3) (2016) 317–329.
Published
2019-04-17
How to Cite
KWICZALA, Andrzej Michal et al.
Hybrid techology of flue gas denitrification system. Part 1—Preliminary studies of flow turbulence and pressure drop in the elements of rotary air heater baskets.
Journal of Power Technologies, [S.l.], v. 99, n. 2, p. 98–103, apr. 2019.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1479>. Date accessed: 21 dec. 2024.
Issue
Section
Contemporary Problems of Thermal Engineering 2018 Gliwice
Keywords
Hybrid DeNOx System, turbulence models, backward facing step, rotary air heater, CFD
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).