Integrated anaerobic digestion and gasification processes for upgrade of ethanol biorefinery residues
Abstract
The upgrading of the biorefineries residues is a possible way to increase the overall process efficiency while attaining economicalrevenues from wastes that otherwise would be discarded. In this sense, anaerobic digestion and gasification representinteresting alternatives to convert organic residues into biofuels, electricity or other bioproducts. However, few studies haveexplored energy integration possibilities between those options or evaluated various final product pathways. Thus, in thiswork, various scenarios aimed at capitalizing the main residues of the sugarcane ethanol industry (vinasse and bagasse)are investigated. Two process layouts combining anaerobic digestion and gasification are proposed for each desired product(methane, hydrogen or power). The highest exergy efficiency (48%) was obtained for the configuration focused on methaneproduction and using a combined cycle, since it requires fewer resources and separation steps to convert feedstock into exportableproducts. On the other hand, exergy was primarily destroyed in vinasse disposal, since a significant fraction of itsorganic wastes are inert to anaerobic digestion, followed by the bagasse gasifier and utility systems, due to the irreversiblereactions occurring in these processes. In short, this study points to some improvement opportunities and reinforces theadvantages of the waste capitalization concept.References
[1] International Energy Agency (IEA), Renewables information: Overview
2017, IEA Statistics, 2017.
[2] Brazilian Energy Research Company (EPE), Brazilian Energy Balance
year 2016, EPE, Rio de Janeiro, RJ, Brazil, 2017.
[3] National Water Agency of Brazil (ANA), Handbook of water conservation
and reuse in the sugarcane industry (In portuguese), ANA; FIESP;
UNICA; CTC, 2009.
[4] R. N. Nakashima, S. de Oliveira Junior, Exergy assessment of vinasse
disposal alternatives : concentration , anaerobic digestion and fertirrigation,
in: 31st International Conference on Efficiency, Cost, Optimization,
Simulation and Environmental Impact on Energy Systems ECOS,
2018, p. 15.
[5] L. F. Pellegrini, S. de Oliveira, Exergy analysis of sugarcane
bagasse gasification, Energy 32 (4) (2007) 314–327.
doi:10.1016/j.energy.2006.07.028.
[6] W. M. Budzianowski, Low-carbon power generation cycles: the feasibility
of co2 capture and opportunities for integration, Journal of Power
Technologies 91 (1) (2011) 6–13.
[7] R. Palacios-Bereche, K. J. Mosqueira-Salazar, M. Modesto, A. V. Ensinas,
S. A. Nebra, L. M. Serra, M. A. Lozano, Exergetic analysis of the
integrated first- and second-generation ethanol production from sugarcane,
Energy 62 (2013) 46–61. doi:10.1016/j.energy.2013.05.010.
[8] G. Allesina, S. Pedrazzi, L. Guidetti, P. Tartarini, Modeling of
coupling gasification and anaerobic digestion processes for maize
bioenergy conversion, Biomass and Bioenergy 81 (2015) 444–451.
doi:10.1016/j.biombioe.2015.07.010.
[9] M. Gassner, F. Maréchal, Thermo-economic process model for thermochemical
production of Synthetic Natural Gas (SNG) from lignocellulosic
biomass, Biomass and Bioenergy 33 (11) (2009) 1587–1604.
doi:10.1016/j.biombioe.2009.08.004.
[10] L. Tock, F. Maréchal, Co-production of hydrogen and electricity
from lignocellulosic biomass: Process design and
thermo-economic optimization, Energy 45 (1) (2012) 339–349.
doi:10.1016/j.energy.2012.01.056.
[11] E. L. Barrera, E. Rosa, H. Spanjers, O. Romero, S. De Meester,
J. Dewulf, A comparative assessment of anaerobic digestion power
plants as alternative to lagoons for vinasse treatment: Life cycle assessment
and exergy analysis, Journal of Cleaner Production 113
(2016) 459–471. doi:10.1016/j.jclepro.2015.11.095.
[12] R. M. Leme, J. E. Seabra, Technical-economic assessment of different
biogas upgrading routes from vinasse anaerobic digestion
in the Brazilian bioethanol industry, Energy 119 (2017) 754–766.
doi:10.1016/j.energy.2016.11.029.
[13] D. Flórez-Orrego, J. A. M. da Silva, H. Velásquez, S. de Oliveira, Renewable
and non-renewable exergy costs and CO2 emissions in the
production of fuels for Brazilian transportation sector, Energy 88 (2015)
18–36. doi:10.1016/j.energy.2015.05.031.
[14] E. L. Barrera, H. Spanjers, O. Romero, E. Rosa, J. Dewulf, Characterization
of the sulfate reduction process in the anaerobic digestion
of a very high strength and sulfate rich vinasse, Chemical Engineering
Journal 248 (2014) 383–393. doi:10.1016/j.cej.2014.03.057.
[15] A. C. Wilkie, K. J. Riedesel, J. M. Owens, Stillage characterization
and anaerobic treatment of ethanol stillage from conventional and
cellulosic feedstocks, Biomass and Bioenergy 19 (2) (2000) 63–102.
doi:10.1016/S0961-9534(00)00017-9.
[16] A. Carrara, A. Perdichizzi, G. Barigozzi, Simulation of an hydrogen production
steam reforming industrial plant for energetic performance prediction,
International Journal of Hydrogen Energy 35 (8) (2010) 3499–
3508. doi:10.1016/j.ijhydene.2009.12.156.
[17] D. Flórez-Orrego, S. de Oliveira Junior, On the efficiency, exergy
costs and CO2 emission cost allocation for an integrated syngas
and ammonia production plant, Energy 117 (2016) 341–360.
doi:10.1016/j.energy.2016.05.096.
[18] P. Basu, Biomass Gasification and Pyrolysis, Elsevier, 2010.
doi:10.1016/c2009-0-20099-7.
[19] J. Andersson, J. Lundgren, Techno-economic analysis of ammonia
production via integrated biomass gasification, Applied Energy 130
(2014) 484–490. doi:10.1016/j.apenergy.2014.02.029.
[20] Y. C. Ardila, J. E. J. Figueroa, B. H. Lunelli, R. M. Filho, M. R. Wolf
Maciel, Syngas production from sugar cane bagasse in a circulating
fluidized bed gasifier using Aspen Plus: Modelling and Simulation,
Computer Aided Chemical Engineering 30 (2012) 1093–1097.
doi:10.1016/b978-0-444-59520-1.50077-4.
[21] C. M. Kinchin, R. L. Bain, Hydrogen Production from Biomass via Indirect
Gasification : The Impact of NREL Process Development Unit
Gasifier Correlations (2009).
[22] Haldor Topsøe, From solid fuels to substitute natural gas (SNG) using
TREMP Topsøe Recycle Energy-efficient Methanation Process,
www.topsoe.com (2009).
[23] S. Li, X. Ji, X. Zhang, L. Gao, H. Jin, Coal to SNG: Technical progress,
modeling and system optimization through exergy analysis, Applied
Energy 136 (2014) 98–109. doi:10.1016/J.APENERGY.2014.09.006.
[24] H. H. Nguyen, Modelling of food waste digestion using ADM1 integrated
with Aspen Plus, Ph.D. thesis, University of Southampton, Faculty
of Engineering and the Environment (2014).
[25] I. D. C. Macedo, M. R. L. V. Leal, J. E. A. R. Silva, Greenhouse gases
emissions of the ethanol use in Brazil (In portuguese), Deparment of
Environment, São Paulo State Government, 2004.
[26] A. Elia Neto, Vinasse state of the art (In portuguese), UNICA, Piracicaba,
SP, Brazil, 2016.
[27] D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G.
Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, V. A. Vavilin,
Anaerobic digestion model no. 1 (ADM1), IWA task group for mathematical
modelling of anaerobic digestion processes, IWA Publishing,
London, UK, 2002.
[28] E. L. Barrera, H. Spanjers, K. Solon, Y. Amerlinck, I. Nopens, J. Dewulf,
Modeling the anaerobic digestion of cane-molasses vinasse: Extension
of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction
for a very high strength and sulfate rich wastewater, Water
Research 71 (2015) 42–54. doi:10.1016/j.watres.2014.12.026.
[29] M. &. Eddy, F. L. Burton, H. D. Stensel, G. Tchobanoglous, Wastewater
engineering: treatment and reuse, McGraw Hill, 2003.
[30] Aspen Plus, Rate-based model of the CO2 capture process by NaOH
using Aspen Plus, Aspen Tecnology, Inc., Bedford, MA, USA, 2013.
[31] H. Cherif, C. Coquelet, P. Stringari, D. Clodic, L. Pellegrini, S. Moioli,
S. Langé, Experimental and Simulation Results for the Removal of
H2S from Biogas by Means of Sodium Hydroxide in Structured Packed
Columns, in: ICBST 2016: 18th International Conference on Biogas
Science and Technology, 2016, p. 9.
[32] R. P. Field, R. Brasington, Baseline flowsheet model for IGCC with carbon
capture, Industrial and Engineering Chemistry Research 50 (19)
(2011) 11306–11312. doi:10.1021/ie200288u.
[33] M. Puig-Arnavat, J. C. Bruno, A. Coronas, Modified Thermodynamic
Equilibrium Model for Biomass Gasification: A Study of the Influence
of Operating Conditions, Energy & Fuels 26 (2) (2012) 1385–1394.
doi:10.1021/ef2019462.
[34] A. Duret, C. Friedli, F. Maréchal, Process design of Synthetic
Natural Gas (SNG) production using wood gasification,
Journal of Cleaner Production 13 (15) (2005) 1434–1446.
doi:10.1016/j.jclepro.2005.04.009.
[35] M.-J. Yoo, L. Lessard, M. Kermani, F. Maréchal, Osmoselua – an integrated
approach to energy systems integration with lcia and gis, in:
K. V. Gernaey, J. K. Huusom, R. Gani (Eds.), 12th International Symposium
on Process Systems Engineering and 25th European Symposium
on Computer Aided Process Engineering, Vol. 37 of Computer
Aided Chemical Engineering, Elsevier, 2015, pp. 587 – 592.
doi:10.1016/B978-0-444-63578-5.50093-1.
[36] D. Flórez-Orrego, S. Sharma, S. D. Oliveira, F. Marechal, Combined
Exergy Analysis and Energy Integration for Design Optimization of Nitrogen
Fertilizer Plants, in: 30th International Conference on Efficiency,
Cost, Optimization, Simulation and Environmental Impact of Energy
Systems, ECOS 2017, San Diego, CA, USA, 2017.
[37] V. Santos, R. Ely, A. Szklo, A. Magrini, Chemicals, electricity and fuels
from biorefineries processing Brazils sugarcane bagasse: Production
recipes and minimum selling prices, Renewable and Sustainable Energy
Reviews 53 (2016) 1443–1458. doi:10.1016/j.rser.2015.09.069.
[38] D. Hotza, J. Diniz da Costa, Fuel cells development and hydrogen
production from renewable resources in Brazil, International
Journal of Hydrogen Energy 33 (19) (2008) 4915–4935.
doi:10.1016/j.ijhydene.2008.06.028.
[39] S. Tai, K. Matsushige, T. Goda, Chemical exergy of organic matter in
wastewater, International Journal of Environmental Studies 27 (3-4)
(1986) 301–315. doi:10.1080/00207238608710299.
[40] S. A. Channiwala, P. P. Parikh, A unified correlation for estimating
HHV of solid, liquid and gaseous fuels, Fuel 81 (8) (2002) 1051–1063.
doi:10.1016/s0016-2361(01)00131-4.
[41] J. Szargut, D. R. Morris, F. R. Steward, Energy analysis of thermal,
chemical, and metallurgical processes, Hemisphere Publishing, New
York, NY, 1988.
[42] D. Flórez-Orrego, J. A. M. Silva, S. D. Oliveira, Exergy and environmental
comparison of the end use of vehicle fuels: The Brazilian
case, Energy Conversion and Management 100 (2015) 220–231.
doi:10.1016/j.enconman.2015.04.074.
2017, IEA Statistics, 2017.
[2] Brazilian Energy Research Company (EPE), Brazilian Energy Balance
year 2016, EPE, Rio de Janeiro, RJ, Brazil, 2017.
[3] National Water Agency of Brazil (ANA), Handbook of water conservation
and reuse in the sugarcane industry (In portuguese), ANA; FIESP;
UNICA; CTC, 2009.
[4] R. N. Nakashima, S. de Oliveira Junior, Exergy assessment of vinasse
disposal alternatives : concentration , anaerobic digestion and fertirrigation,
in: 31st International Conference on Efficiency, Cost, Optimization,
Simulation and Environmental Impact on Energy Systems ECOS,
2018, p. 15.
[5] L. F. Pellegrini, S. de Oliveira, Exergy analysis of sugarcane
bagasse gasification, Energy 32 (4) (2007) 314–327.
doi:10.1016/j.energy.2006.07.028.
[6] W. M. Budzianowski, Low-carbon power generation cycles: the feasibility
of co2 capture and opportunities for integration, Journal of Power
Technologies 91 (1) (2011) 6–13.
[7] R. Palacios-Bereche, K. J. Mosqueira-Salazar, M. Modesto, A. V. Ensinas,
S. A. Nebra, L. M. Serra, M. A. Lozano, Exergetic analysis of the
integrated first- and second-generation ethanol production from sugarcane,
Energy 62 (2013) 46–61. doi:10.1016/j.energy.2013.05.010.
[8] G. Allesina, S. Pedrazzi, L. Guidetti, P. Tartarini, Modeling of
coupling gasification and anaerobic digestion processes for maize
bioenergy conversion, Biomass and Bioenergy 81 (2015) 444–451.
doi:10.1016/j.biombioe.2015.07.010.
[9] M. Gassner, F. Maréchal, Thermo-economic process model for thermochemical
production of Synthetic Natural Gas (SNG) from lignocellulosic
biomass, Biomass and Bioenergy 33 (11) (2009) 1587–1604.
doi:10.1016/j.biombioe.2009.08.004.
[10] L. Tock, F. Maréchal, Co-production of hydrogen and electricity
from lignocellulosic biomass: Process design and
thermo-economic optimization, Energy 45 (1) (2012) 339–349.
doi:10.1016/j.energy.2012.01.056.
[11] E. L. Barrera, E. Rosa, H. Spanjers, O. Romero, S. De Meester,
J. Dewulf, A comparative assessment of anaerobic digestion power
plants as alternative to lagoons for vinasse treatment: Life cycle assessment
and exergy analysis, Journal of Cleaner Production 113
(2016) 459–471. doi:10.1016/j.jclepro.2015.11.095.
[12] R. M. Leme, J. E. Seabra, Technical-economic assessment of different
biogas upgrading routes from vinasse anaerobic digestion
in the Brazilian bioethanol industry, Energy 119 (2017) 754–766.
doi:10.1016/j.energy.2016.11.029.
[13] D. Flórez-Orrego, J. A. M. da Silva, H. Velásquez, S. de Oliveira, Renewable
and non-renewable exergy costs and CO2 emissions in the
production of fuels for Brazilian transportation sector, Energy 88 (2015)
18–36. doi:10.1016/j.energy.2015.05.031.
[14] E. L. Barrera, H. Spanjers, O. Romero, E. Rosa, J. Dewulf, Characterization
of the sulfate reduction process in the anaerobic digestion
of a very high strength and sulfate rich vinasse, Chemical Engineering
Journal 248 (2014) 383–393. doi:10.1016/j.cej.2014.03.057.
[15] A. C. Wilkie, K. J. Riedesel, J. M. Owens, Stillage characterization
and anaerobic treatment of ethanol stillage from conventional and
cellulosic feedstocks, Biomass and Bioenergy 19 (2) (2000) 63–102.
doi:10.1016/S0961-9534(00)00017-9.
[16] A. Carrara, A. Perdichizzi, G. Barigozzi, Simulation of an hydrogen production
steam reforming industrial plant for energetic performance prediction,
International Journal of Hydrogen Energy 35 (8) (2010) 3499–
3508. doi:10.1016/j.ijhydene.2009.12.156.
[17] D. Flórez-Orrego, S. de Oliveira Junior, On the efficiency, exergy
costs and CO2 emission cost allocation for an integrated syngas
and ammonia production plant, Energy 117 (2016) 341–360.
doi:10.1016/j.energy.2016.05.096.
[18] P. Basu, Biomass Gasification and Pyrolysis, Elsevier, 2010.
doi:10.1016/c2009-0-20099-7.
[19] J. Andersson, J. Lundgren, Techno-economic analysis of ammonia
production via integrated biomass gasification, Applied Energy 130
(2014) 484–490. doi:10.1016/j.apenergy.2014.02.029.
[20] Y. C. Ardila, J. E. J. Figueroa, B. H. Lunelli, R. M. Filho, M. R. Wolf
Maciel, Syngas production from sugar cane bagasse in a circulating
fluidized bed gasifier using Aspen Plus: Modelling and Simulation,
Computer Aided Chemical Engineering 30 (2012) 1093–1097.
doi:10.1016/b978-0-444-59520-1.50077-4.
[21] C. M. Kinchin, R. L. Bain, Hydrogen Production from Biomass via Indirect
Gasification : The Impact of NREL Process Development Unit
Gasifier Correlations (2009).
[22] Haldor Topsøe, From solid fuels to substitute natural gas (SNG) using
TREMP Topsøe Recycle Energy-efficient Methanation Process,
www.topsoe.com (2009).
[23] S. Li, X. Ji, X. Zhang, L. Gao, H. Jin, Coal to SNG: Technical progress,
modeling and system optimization through exergy analysis, Applied
Energy 136 (2014) 98–109. doi:10.1016/J.APENERGY.2014.09.006.
[24] H. H. Nguyen, Modelling of food waste digestion using ADM1 integrated
with Aspen Plus, Ph.D. thesis, University of Southampton, Faculty
of Engineering and the Environment (2014).
[25] I. D. C. Macedo, M. R. L. V. Leal, J. E. A. R. Silva, Greenhouse gases
emissions of the ethanol use in Brazil (In portuguese), Deparment of
Environment, São Paulo State Government, 2004.
[26] A. Elia Neto, Vinasse state of the art (In portuguese), UNICA, Piracicaba,
SP, Brazil, 2016.
[27] D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G.
Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, V. A. Vavilin,
Anaerobic digestion model no. 1 (ADM1), IWA task group for mathematical
modelling of anaerobic digestion processes, IWA Publishing,
London, UK, 2002.
[28] E. L. Barrera, H. Spanjers, K. Solon, Y. Amerlinck, I. Nopens, J. Dewulf,
Modeling the anaerobic digestion of cane-molasses vinasse: Extension
of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction
for a very high strength and sulfate rich wastewater, Water
Research 71 (2015) 42–54. doi:10.1016/j.watres.2014.12.026.
[29] M. &. Eddy, F. L. Burton, H. D. Stensel, G. Tchobanoglous, Wastewater
engineering: treatment and reuse, McGraw Hill, 2003.
[30] Aspen Plus, Rate-based model of the CO2 capture process by NaOH
using Aspen Plus, Aspen Tecnology, Inc., Bedford, MA, USA, 2013.
[31] H. Cherif, C. Coquelet, P. Stringari, D. Clodic, L. Pellegrini, S. Moioli,
S. Langé, Experimental and Simulation Results for the Removal of
H2S from Biogas by Means of Sodium Hydroxide in Structured Packed
Columns, in: ICBST 2016: 18th International Conference on Biogas
Science and Technology, 2016, p. 9.
[32] R. P. Field, R. Brasington, Baseline flowsheet model for IGCC with carbon
capture, Industrial and Engineering Chemistry Research 50 (19)
(2011) 11306–11312. doi:10.1021/ie200288u.
[33] M. Puig-Arnavat, J. C. Bruno, A. Coronas, Modified Thermodynamic
Equilibrium Model for Biomass Gasification: A Study of the Influence
of Operating Conditions, Energy & Fuels 26 (2) (2012) 1385–1394.
doi:10.1021/ef2019462.
[34] A. Duret, C. Friedli, F. Maréchal, Process design of Synthetic
Natural Gas (SNG) production using wood gasification,
Journal of Cleaner Production 13 (15) (2005) 1434–1446.
doi:10.1016/j.jclepro.2005.04.009.
[35] M.-J. Yoo, L. Lessard, M. Kermani, F. Maréchal, Osmoselua – an integrated
approach to energy systems integration with lcia and gis, in:
K. V. Gernaey, J. K. Huusom, R. Gani (Eds.), 12th International Symposium
on Process Systems Engineering and 25th European Symposium
on Computer Aided Process Engineering, Vol. 37 of Computer
Aided Chemical Engineering, Elsevier, 2015, pp. 587 – 592.
doi:10.1016/B978-0-444-63578-5.50093-1.
[36] D. Flórez-Orrego, S. Sharma, S. D. Oliveira, F. Marechal, Combined
Exergy Analysis and Energy Integration for Design Optimization of Nitrogen
Fertilizer Plants, in: 30th International Conference on Efficiency,
Cost, Optimization, Simulation and Environmental Impact of Energy
Systems, ECOS 2017, San Diego, CA, USA, 2017.
[37] V. Santos, R. Ely, A. Szklo, A. Magrini, Chemicals, electricity and fuels
from biorefineries processing Brazils sugarcane bagasse: Production
recipes and minimum selling prices, Renewable and Sustainable Energy
Reviews 53 (2016) 1443–1458. doi:10.1016/j.rser.2015.09.069.
[38] D. Hotza, J. Diniz da Costa, Fuel cells development and hydrogen
production from renewable resources in Brazil, International
Journal of Hydrogen Energy 33 (19) (2008) 4915–4935.
doi:10.1016/j.ijhydene.2008.06.028.
[39] S. Tai, K. Matsushige, T. Goda, Chemical exergy of organic matter in
wastewater, International Journal of Environmental Studies 27 (3-4)
(1986) 301–315. doi:10.1080/00207238608710299.
[40] S. A. Channiwala, P. P. Parikh, A unified correlation for estimating
HHV of solid, liquid and gaseous fuels, Fuel 81 (8) (2002) 1051–1063.
doi:10.1016/s0016-2361(01)00131-4.
[41] J. Szargut, D. R. Morris, F. R. Steward, Energy analysis of thermal,
chemical, and metallurgical processes, Hemisphere Publishing, New
York, NY, 1988.
[42] D. Flórez-Orrego, J. A. M. Silva, S. D. Oliveira, Exergy and environmental
comparison of the end use of vehicle fuels: The Brazilian
case, Energy Conversion and Management 100 (2015) 220–231.
doi:10.1016/j.enconman.2015.04.074.
Published
2019-04-17
How to Cite
NAKASHIMA, Rafael Nogueira; FLÓREZ-ORREGO, Daniel; DE OLIVEIRA JUNIOR, Silvio.
Integrated anaerobic digestion and gasification processes for upgrade of ethanol biorefinery residues.
Journal of Power Technologies, [S.l.], v. 99, n. 2, p. 104–114, apr. 2019.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1475>. Date accessed: 21 dec. 2024.
Issue
Section
Contemporary Problems of Thermal Engineering 2018 Gliwice
Keywords
biogas; gasification; exergy; anaerobic digestion; energy integration
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).