Effect of anode porosity on the performance of molten carbonate fuel cell
Abstract
Nickel anodes, for molten carbonate fuel cell (MCFC), of various porosities were fabricated using tape casting and firingprocesses. The same slurry composition but different sintering temperatures, 700 and 900°C, were used to obtain differentanode porosities. Combined experimental and computational techniques were used to study the influence of anode porosityon the performance of molten carbonate fuels cell. The power generated by the 20.25 cm2 class MCFC single cell wasexperimentally measured at 650°C in humidified hydrogen with respect to the porosity of the anodes. The computationalaspect involved the modeling of the microstructure of the sintered porous anodes which included measured size distributionof Ni powder used and porosities of the manufactured materials. For the best performing single cell, the optimal porosity forthe nickel MCFC anode was experimentally determined to be 55%. Computations revealed that the specific surface area,which is a determining factor in electrochemical reactions, reaches a maximum at a porosity of 52%.References
[1] J. Brouwer, F. Jabbari, E. M. Leal, T. Orr, Analysis of a
molten carbonate fuel cell: Numerical modeling and experimental
validation, Journal of Power Sources 158 (1) (2006) 213–224.
doi:10.1016/j.jpowsour.2005.07.093.
[2] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical
energy storage system: A critical review, Progress in Natural Science
19 (3) (2009) 291–312. doi:10.1016/j.pnsc.2008.07.014.
[3] S. M. M. Ehteshami, S. H. Chan, The role of hydrogen and
fuel cells to store renewable energy in the future energy network
- potentials and challenges, Energy Policy 73 (2014) 103–109.
doi:10.1016/j.enpol.2014.04.046.
[4] D. Cao, Y. Sun, G. Wang, Direct carbon fuel cell: Fundamentals and
recent developments, Journal of Power Sources 167 (2) (2007) 250–
257. doi:10.1016/j.jpowsour.2007.02.034.
[5] S. Campanari, P. Chiesa, G. Manzolini, CO2 capture from combined
cycles integrated with Molten Carbonate Fuel Cells, International
Journal of Greenhouse Gas Control 4 (3) (2010) 441–451.
doi:10.1016/j.ijggc.2009.11.007.
[6] S. Campanari, P. Chiesa, G. Manzolini, A. Giannotti, F. Federici,
P. Bedont, F. Parodi, Application of MCFCs for active CO2 capture
within natural gas combined cycles, Energy Procedia 4 (2011) 1235–
1242. doi:10.1016/j.egypro.2011.01.179.
[7] L. Caprile, B. Passalacqua, A. Torazza, Carbon capture: Energy
wasting technologies or the MCFCs challenge?, International
Journal of Hydrogen Energy 36 (16) (2011) 10269–10277.
doi:10.1016/j.ijhydene.2010.10.028.
[8] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable
energy applications: Part I. Revisiting molten carbonate
properties from a sustainable viewpoint, International
Journal of Hydrogen Energy 41 (41) (2016) 18739–18746.
doi:10.1016/j.ijhydene.2015.12.073.
[9] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable
energy applications: Part II. Review of recent literature, International
Journal of Hydrogen Energy 41 (42) (2016) 18971–18994.
doi:10.1016/j.ijhydene.2016.08.076.
[10] A. L. Dicks, Molten carbonate fuel cells, Current Opinion
in Solid State and Materials Science 8 (2004) 379–383.
doi:10.1016/j.cossms.2004.12.005.
[11] A. Kulkarni, S. Giddey, Materials issues and recent developments in
molten carbonate fuel cells, Journal of Solid State Electrochemistry 16
(2012) 3123–3146. doi:10.1007/s10008-012-1771-y.
[12] J. Molenda, J. Kupecki, R. Baron, M. Blesznowski, G. Brus,
T. Brylewski, M. Bucko, J. Chmielowiec, K. Cwieka, M. Gazda,
A. Gil, P. Jasinski, Z. Jaworski, J. Karczewski, M. Kawalec, R. Kluczowski,
M. Krauz, F. Krok, B. Lukasik, M. Malys, A. Mazur,
A. Mielewczyk-Gryn, J. Milewski, S. Molin, G. Mordarski, M. Mosialek,
K. Motylinski, E. Naumovich, P. Nowak, G. Pasciak, P. Pianko-Oprych,
D. Pomykalska, M. Rekas, A. Sciazko, K. Swierczek, J. Szmyd, S. Wachowski,
T. Wejrzanowski, W. Wrobel, K. Zagorski, W. Zajac, A. Zurawska,
Status report on high temperature fuel cells in Poland - recent
advances and achievements, International Journal of Hydrogen Energy
42 (7) (2017) 4366–4403. doi:10.1016/j.ijhydene.2016.12.087.
[13] J. R. Selman, C. C. Chen, Scientific and technical maturity of molten
carbonate technology, International Journal of Hydrogen Energy
37 (24) (2012) 19280–19288. doi:10.1016/j.ijhydene.2012.06.016.
[14] K. Czelej, K. Cwieka, K. J. Kurzydlowski, CO2 stability on the Ni lowindex
surfaces: Van derWaals corrected DFT analysis, Catalysis Communications
80 (2016) 33–38. doi:10.1016/j.catcom.2016.03.017.
[15] K. Czelej, K. Cwieka, T. Wejrzanowski, P. Spiewak, K. J. Kurzydlowski,
Decomposition of activated CO2 species on Ni(110): Role of surface
diffusion in the reaction mechanism, Catalysis Communications 74
(2016) 65–70. doi:10.1016/j.catcom.2015.10.034.
[16] C.-G. Lee, J.-Y. Hwang, S.-Y. Lee, M. Oh, D.-H. Kim, H.-C. Lim, Effect
of anode area on the cell performance in a molten carbonate fuel
cell, Journal of The Electrochemical Society 155 (2) (2008) 138–143.
doi:10.1149/1.2815573.
[17] C.-W. Lee, M. Lee, M.-J. Lee, S.-C. Chang, S.-P. Yoon, H. C. Ham,
J. Han, Effect of the flow directions on a 100cm2 MCFC single cell
with internal flow channels, International Journal of Hydrogen Energy
(2016) 1–14doi:10.1016/j.ijhydene.2016.03.188.
[18] M. Cassir, S. J. McPhail, A. Moreno, Strategies and new developments
in the field of molten carbonates and high-temperature fuel cells in the
carbon cycle, International Journal of Hydrogen Energy 37 (24) (2012)
19345–19350. doi:10.1016/j.ijhydene.2011.11.006.
[19] D. Marra, Gas distribution inside an MCFC, International
Journal of Hydrogen Energy 33 (12) (2008) 3173–3177.
doi:10.1016/j.ijhydene.2008.03.005.
[20] S. M. C. Ang, E. S. Fraga, N. P. Brandon, N. J. Samsatli, D. J.
Brett, Fuel cell systems optimisation - methods and strategies, International
Journal of Hydrogen Energy 36 (22) (2011) 14678–14703.
doi:10.1016/j.ijhydene.2011.08.053.
[21] S. H. Choi, D.-N. Nyeok Park, C. W. Yoon, S.-P. P. Yoon, S. W. Nam,
S.-A. A. Hong, Y.-G. G. Shul, H. C. Ham, J. Han, A study on the electrochemical
performance of 100-cm2 class direct carbon-molten carbonate
fuel cell (DC-MCFC), International Journal of Hydrogen Energy
40 (15) (2015) 5144–5149. doi:10.1016/j.ijhydene.2014.12.112.
[22] R. Bove, P. Lunghi, Experimental comparison of MCFC performance
using three different biogas types and methane, Journal of Power
Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.
[23] R. Ciccoli, V. Cigolotti, R. Lo Presti, E. Massi, S. J. McPhail,
G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti,
F. Zaza, Molten carbonate fuel cells fed with biogas:
Combating H2S, Waste Management 30 (6) (2010) 1018–1024.
doi:10.1016/j.wasman.2010.02.022.
[24] V. Cigolotti, S. McPhail, A. Moreno, S. P. Yoon, J. H. Han, S. W.
Nam, T. H. Lim, MCFC fed with biogas: Experimental investigation
of sulphur poisoning using impedance spectroscopy, International
Journal of Hydrogen Energy 36 (16) (2011) 10311–10318.
doi:10.1016/j.ijhydene.2010.09.100.
[25] T. Watanabe, Y. Izaki, Y. Mugikura, H. Morita, M. Yoshikawa,
M. Kawase, F. Yoshiba, K. Asano, Applicability of molten carbonate
fuel cells to various fuels, Journal of Power Sources 160 (2) (2006)
868–871. doi:10.1016/j.jpowsour.2006.06.058.
[26] D. Seo, D. Park, S. Yoon, J. Han, I. Oh, Influence of the thin anode
geometry on the performance of molten carbonate fuel cells, Transactions
of the Korean Hydrogen and New Energy Society 22 (5) (2011)
599–608.
[27] T. Wejrzanowski, S. Haj Ibrahim, K. Cwieka, M. Loeffler, J. Milewski,
E. Zschech, C.-G. Lee, Multi-modal porous microstructure for high temperature
fuel cell application, Journal of Power Sources 373 (2018)
85–94. doi:10.1016/j.jpowsour.2017.11.009.
[28] X. Huang, G. Franchi, F. Cai, Characterization of porous bi-modal
Ni structures, Journal of Porous Materials 16 (2) (2009) 165–173.
doi:10.1007/s10934-007-9181-8.
[29] O. Stenzel, O. Pecho, L. Holzer, M. Neumann, V. Schmidt, Predicting
effective conductivities based on geometric microstructure characteristics,
AIChE Journal 62 (5) (2016) 1834–1843. doi:10.1002/aic.15160.
[30] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. R.
Prestat, V. Schmidt, Stochastic 3D modeling of La0.6Sr0.4CoO3-
cathodes based on structural segmentation of FIB-SEM images,
Computational Materials Science 67 (2013) 48–62.
doi:10.1016/j.commatsci.2012.08.030.
[31] G. Gaiselmann, M. Neumann, V. Schmidt, O. Pecho, T. Hocker,
L. Holzer, Quantitative relationships between microstructure and effective
transport properties based on virtual materials testing, AIChE
Journal 60 (6) (2014) 1983–1999. doi:10.1002/aic.14416.
[32] M. Neumann, J. Stanˇ ek, O. M. Pecho, L. Holzer, V. Beneš,
V. Schmidt, Stochastic 3D modeling of complex three-phase
microstructures in SOFC-electrodes with completely connected
phases, Computational Materials Science 118 (2016) 353–364.
doi:10.1016/j.commatsci.2016.03.013.
[33] S. Haj Ibrahim, M. Neumann, F. Klingner, V. Schmidt, T. Wejrzanowski,
Analysis of the 3D microstructure of tape-cast open-porous materials
via a combination of experiments and modeling, Materials & Design
133 (2017) 216–223. doi:10.1016/j.matdes.2017.07.058.
[34] R. Bove, P. Lunghi, Experimental comparison of MCFC performance
using three different biogas types and methane, Journal of Power
Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.
[35] S.-G. Hong, J. R. Selman, Wetting characteristics of carbonate melts
under MCFC operating conditions, Journal of The Electrochemical Society
151 (1) (2004) 77–84. doi:10.1149/1.1629094.
[36] J. Y. Youn, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, S. A. Hong, K. Y.
Lee, Fabrication and characteristics of anode as an electrolyte reservoir
for molten carbonate fuel cell, Journal of Power Sources 157 (1)
(2006) 121–127. doi:10.1016/j.jpowsour.2005.07.068.
[37] M. Yoshikawa, A. Bodén, M. Sparr, G. Lindbergh, Experimental determination
of effective surface area and conductivities in the porous
anode of molten carbonate fuel cell, Journal of Power Sources 158 (1)
(2006) 94–102. doi:10.1016/j.jpowsour.2005.09.038.
[38] R. Campbell, M. G. Bakker, C. Treiner, J. Chevalet, Electrodeposition
of mesoporous nickel onto foamed metals using surfactant and
polymer templates, Journal of Porous Materials 11 (2) (2004) 63–69.
doi:10.1023/B:JOPO.0000027361.04282.f6.
[39] N. P. Brandon, D. J. Brett, Engineering porous materials for fuel
cell applications, Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences 364 (1838) (2006) 147–159.
doi:10.1098/rsta.2005.1684.
[40] K. Czelej, K. Cwieka, J. C. Colmenares, K. Kurzydłowski, Atomistic
insight into the electrode reaction mechanism of cathode in Molten
Carbonate Fuel Cell, J. Mater. Chem. A 5 (26) (2017) 13763–13768.
doi:10.1039/c7ta02011b.
[41] K. Czelej, K. Cwieka, J. C. Colmenares, K. J. Kurzydlowski,
Catalytic activity of NiO cathode in molten carbonate fuel
cells, Applied Catalysis B: Environmental 222 (2018) 73–75.
doi:10.1016/j.apcatb.2017.10.003.
[42] R. O’Hayre, D. M. Barnett, F. B. Prinz, The triple phase boundary.
a mathematical model and experimental investigations for fuel cells,
Journal of The Electrochemical Society 152 (2) (2005) A439–A444.
doi:10.1149/1.1851054.
[43] S. Zhang, A. M. Gokhale, Computer simulations of topological connectivity
of the triple phase boundaries in solid oxide fuel cell composite
cathodes, Journal of Power Sources 219 (2012) 172–179.
doi:10.1016/j.jpowsour.2012.07.049.
[44] V. M. Janardhanan, V. Heuveline, O. Deutschmann, Threephase
boundary length in solid-oxide fuel cells: A mathematical
model, Journal of Power Sources 178 (1) (2008) 368–372.
doi:10.1016/j.jpowsour.2007.11.083.
[45] T. Wejrzanowski, J. Gluch, S. H. Ibrahim, K. Cwieka, J. Milewski,
E. Zschech, Characterization of spatial distribution of electrolyte in
molten carbonate fuel cell cathodes, Advanced Engineering Materials
(2018) 1700909.doi:10.1002/adem.201700909.
[46] J. R. Selman, Research, development, and demonstration of molten
carbonate fuel cell systems, Springer US, Boston, MA, 1993, pp. 345–
463.
[47] D. Stoyan, A. Wagner, H. Hermann, A. Elsner, Statistical characterization
of the pore space of random systems of hard spheres,
Journal of Non-Crystalline Solids 357 (6) (2011) 1508–1515.
doi:10.1016/j.jnoncrysol.2010.12.033.
[48] H. Hermann, A. Elsner, M. Hecker, D. Stoyan, Computer simulated
dense-random packing models as approach to the structure of porous
low-k dielectrics, Microelectronic Engineering 81 (2-4) (2005) 535–
543. doi:10.1016/j.mee.2005.03.058.
[49] A. Bezrukov, M. Bargieł, D. Stoyan, Statistical analysis of simulated
random packings of spheres, Particle and Particle Systems Characterization
19 (2) (2002) 111–118. doi:10.1002/ppsc.200600974.
[50] T. Wejrzanowski, S. H. Ibrahim, J. Skibinski, K. Cwieka, K. J.
Kurzydlowski, Appropriate models for simulating open-porous materials,
Image Analysis and Stereology 36 (2) (2017) 107–112.
doi:10.5566/ias.1649.
[51] T. Wejrzanowski, S. H. Ibrahim, K. Cwieka, J. Milewski, K. J. Kurzydlowski,
Design of open-porous materials for high-temperature fuel
cells, Journal of Power Technologies 96 (3) (2016) 178–182.
[52] T. Wejrzanowski, J. Skibinski, J. Szumbarski, K. J. Kurzydlowski,
Structure of foams modeled by Laguerre-Voronoi tessellations,
Computational Materials Science 67 (2013) 216–221.
doi:10.1016/j.commatsci.2012.08.046.
[53] H. Viet, P. Nguyen, M. Roslee, D. Seo, S. Pil, H. Chul,
S. Woo, J. Han, J. Kim, Nano Ni layered anode for enhanced
MCFC performance at reduced operating temperature, International
Journal of Hydrogen Energy 39 (23) (2014) 12285–12290.
doi:10.1016/j.ijhydene.2014.03.253.
molten carbonate fuel cell: Numerical modeling and experimental
validation, Journal of Power Sources 158 (1) (2006) 213–224.
doi:10.1016/j.jpowsour.2005.07.093.
[2] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical
energy storage system: A critical review, Progress in Natural Science
19 (3) (2009) 291–312. doi:10.1016/j.pnsc.2008.07.014.
[3] S. M. M. Ehteshami, S. H. Chan, The role of hydrogen and
fuel cells to store renewable energy in the future energy network
- potentials and challenges, Energy Policy 73 (2014) 103–109.
doi:10.1016/j.enpol.2014.04.046.
[4] D. Cao, Y. Sun, G. Wang, Direct carbon fuel cell: Fundamentals and
recent developments, Journal of Power Sources 167 (2) (2007) 250–
257. doi:10.1016/j.jpowsour.2007.02.034.
[5] S. Campanari, P. Chiesa, G. Manzolini, CO2 capture from combined
cycles integrated with Molten Carbonate Fuel Cells, International
Journal of Greenhouse Gas Control 4 (3) (2010) 441–451.
doi:10.1016/j.ijggc.2009.11.007.
[6] S. Campanari, P. Chiesa, G. Manzolini, A. Giannotti, F. Federici,
P. Bedont, F. Parodi, Application of MCFCs for active CO2 capture
within natural gas combined cycles, Energy Procedia 4 (2011) 1235–
1242. doi:10.1016/j.egypro.2011.01.179.
[7] L. Caprile, B. Passalacqua, A. Torazza, Carbon capture: Energy
wasting technologies or the MCFCs challenge?, International
Journal of Hydrogen Energy 36 (16) (2011) 10269–10277.
doi:10.1016/j.ijhydene.2010.10.028.
[8] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable
energy applications: Part I. Revisiting molten carbonate
properties from a sustainable viewpoint, International
Journal of Hydrogen Energy 41 (41) (2016) 18739–18746.
doi:10.1016/j.ijhydene.2015.12.073.
[9] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable
energy applications: Part II. Review of recent literature, International
Journal of Hydrogen Energy 41 (42) (2016) 18971–18994.
doi:10.1016/j.ijhydene.2016.08.076.
[10] A. L. Dicks, Molten carbonate fuel cells, Current Opinion
in Solid State and Materials Science 8 (2004) 379–383.
doi:10.1016/j.cossms.2004.12.005.
[11] A. Kulkarni, S. Giddey, Materials issues and recent developments in
molten carbonate fuel cells, Journal of Solid State Electrochemistry 16
(2012) 3123–3146. doi:10.1007/s10008-012-1771-y.
[12] J. Molenda, J. Kupecki, R. Baron, M. Blesznowski, G. Brus,
T. Brylewski, M. Bucko, J. Chmielowiec, K. Cwieka, M. Gazda,
A. Gil, P. Jasinski, Z. Jaworski, J. Karczewski, M. Kawalec, R. Kluczowski,
M. Krauz, F. Krok, B. Lukasik, M. Malys, A. Mazur,
A. Mielewczyk-Gryn, J. Milewski, S. Molin, G. Mordarski, M. Mosialek,
K. Motylinski, E. Naumovich, P. Nowak, G. Pasciak, P. Pianko-Oprych,
D. Pomykalska, M. Rekas, A. Sciazko, K. Swierczek, J. Szmyd, S. Wachowski,
T. Wejrzanowski, W. Wrobel, K. Zagorski, W. Zajac, A. Zurawska,
Status report on high temperature fuel cells in Poland - recent
advances and achievements, International Journal of Hydrogen Energy
42 (7) (2017) 4366–4403. doi:10.1016/j.ijhydene.2016.12.087.
[13] J. R. Selman, C. C. Chen, Scientific and technical maturity of molten
carbonate technology, International Journal of Hydrogen Energy
37 (24) (2012) 19280–19288. doi:10.1016/j.ijhydene.2012.06.016.
[14] K. Czelej, K. Cwieka, K. J. Kurzydlowski, CO2 stability on the Ni lowindex
surfaces: Van derWaals corrected DFT analysis, Catalysis Communications
80 (2016) 33–38. doi:10.1016/j.catcom.2016.03.017.
[15] K. Czelej, K. Cwieka, T. Wejrzanowski, P. Spiewak, K. J. Kurzydlowski,
Decomposition of activated CO2 species on Ni(110): Role of surface
diffusion in the reaction mechanism, Catalysis Communications 74
(2016) 65–70. doi:10.1016/j.catcom.2015.10.034.
[16] C.-G. Lee, J.-Y. Hwang, S.-Y. Lee, M. Oh, D.-H. Kim, H.-C. Lim, Effect
of anode area on the cell performance in a molten carbonate fuel
cell, Journal of The Electrochemical Society 155 (2) (2008) 138–143.
doi:10.1149/1.2815573.
[17] C.-W. Lee, M. Lee, M.-J. Lee, S.-C. Chang, S.-P. Yoon, H. C. Ham,
J. Han, Effect of the flow directions on a 100cm2 MCFC single cell
with internal flow channels, International Journal of Hydrogen Energy
(2016) 1–14doi:10.1016/j.ijhydene.2016.03.188.
[18] M. Cassir, S. J. McPhail, A. Moreno, Strategies and new developments
in the field of molten carbonates and high-temperature fuel cells in the
carbon cycle, International Journal of Hydrogen Energy 37 (24) (2012)
19345–19350. doi:10.1016/j.ijhydene.2011.11.006.
[19] D. Marra, Gas distribution inside an MCFC, International
Journal of Hydrogen Energy 33 (12) (2008) 3173–3177.
doi:10.1016/j.ijhydene.2008.03.005.
[20] S. M. C. Ang, E. S. Fraga, N. P. Brandon, N. J. Samsatli, D. J.
Brett, Fuel cell systems optimisation - methods and strategies, International
Journal of Hydrogen Energy 36 (22) (2011) 14678–14703.
doi:10.1016/j.ijhydene.2011.08.053.
[21] S. H. Choi, D.-N. Nyeok Park, C. W. Yoon, S.-P. P. Yoon, S. W. Nam,
S.-A. A. Hong, Y.-G. G. Shul, H. C. Ham, J. Han, A study on the electrochemical
performance of 100-cm2 class direct carbon-molten carbonate
fuel cell (DC-MCFC), International Journal of Hydrogen Energy
40 (15) (2015) 5144–5149. doi:10.1016/j.ijhydene.2014.12.112.
[22] R. Bove, P. Lunghi, Experimental comparison of MCFC performance
using three different biogas types and methane, Journal of Power
Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.
[23] R. Ciccoli, V. Cigolotti, R. Lo Presti, E. Massi, S. J. McPhail,
G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti,
F. Zaza, Molten carbonate fuel cells fed with biogas:
Combating H2S, Waste Management 30 (6) (2010) 1018–1024.
doi:10.1016/j.wasman.2010.02.022.
[24] V. Cigolotti, S. McPhail, A. Moreno, S. P. Yoon, J. H. Han, S. W.
Nam, T. H. Lim, MCFC fed with biogas: Experimental investigation
of sulphur poisoning using impedance spectroscopy, International
Journal of Hydrogen Energy 36 (16) (2011) 10311–10318.
doi:10.1016/j.ijhydene.2010.09.100.
[25] T. Watanabe, Y. Izaki, Y. Mugikura, H. Morita, M. Yoshikawa,
M. Kawase, F. Yoshiba, K. Asano, Applicability of molten carbonate
fuel cells to various fuels, Journal of Power Sources 160 (2) (2006)
868–871. doi:10.1016/j.jpowsour.2006.06.058.
[26] D. Seo, D. Park, S. Yoon, J. Han, I. Oh, Influence of the thin anode
geometry on the performance of molten carbonate fuel cells, Transactions
of the Korean Hydrogen and New Energy Society 22 (5) (2011)
599–608.
[27] T. Wejrzanowski, S. Haj Ibrahim, K. Cwieka, M. Loeffler, J. Milewski,
E. Zschech, C.-G. Lee, Multi-modal porous microstructure for high temperature
fuel cell application, Journal of Power Sources 373 (2018)
85–94. doi:10.1016/j.jpowsour.2017.11.009.
[28] X. Huang, G. Franchi, F. Cai, Characterization of porous bi-modal
Ni structures, Journal of Porous Materials 16 (2) (2009) 165–173.
doi:10.1007/s10934-007-9181-8.
[29] O. Stenzel, O. Pecho, L. Holzer, M. Neumann, V. Schmidt, Predicting
effective conductivities based on geometric microstructure characteristics,
AIChE Journal 62 (5) (2016) 1834–1843. doi:10.1002/aic.15160.
[30] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. R.
Prestat, V. Schmidt, Stochastic 3D modeling of La0.6Sr0.4CoO3-
cathodes based on structural segmentation of FIB-SEM images,
Computational Materials Science 67 (2013) 48–62.
doi:10.1016/j.commatsci.2012.08.030.
[31] G. Gaiselmann, M. Neumann, V. Schmidt, O. Pecho, T. Hocker,
L. Holzer, Quantitative relationships between microstructure and effective
transport properties based on virtual materials testing, AIChE
Journal 60 (6) (2014) 1983–1999. doi:10.1002/aic.14416.
[32] M. Neumann, J. Stanˇ ek, O. M. Pecho, L. Holzer, V. Beneš,
V. Schmidt, Stochastic 3D modeling of complex three-phase
microstructures in SOFC-electrodes with completely connected
phases, Computational Materials Science 118 (2016) 353–364.
doi:10.1016/j.commatsci.2016.03.013.
[33] S. Haj Ibrahim, M. Neumann, F. Klingner, V. Schmidt, T. Wejrzanowski,
Analysis of the 3D microstructure of tape-cast open-porous materials
via a combination of experiments and modeling, Materials & Design
133 (2017) 216–223. doi:10.1016/j.matdes.2017.07.058.
[34] R. Bove, P. Lunghi, Experimental comparison of MCFC performance
using three different biogas types and methane, Journal of Power
Sources 145 (2) (2005) 588–593. doi:10.1016/j.jpowsour.2005.01.069.
[35] S.-G. Hong, J. R. Selman, Wetting characteristics of carbonate melts
under MCFC operating conditions, Journal of The Electrochemical Society
151 (1) (2004) 77–84. doi:10.1149/1.1629094.
[36] J. Y. Youn, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, S. A. Hong, K. Y.
Lee, Fabrication and characteristics of anode as an electrolyte reservoir
for molten carbonate fuel cell, Journal of Power Sources 157 (1)
(2006) 121–127. doi:10.1016/j.jpowsour.2005.07.068.
[37] M. Yoshikawa, A. Bodén, M. Sparr, G. Lindbergh, Experimental determination
of effective surface area and conductivities in the porous
anode of molten carbonate fuel cell, Journal of Power Sources 158 (1)
(2006) 94–102. doi:10.1016/j.jpowsour.2005.09.038.
[38] R. Campbell, M. G. Bakker, C. Treiner, J. Chevalet, Electrodeposition
of mesoporous nickel onto foamed metals using surfactant and
polymer templates, Journal of Porous Materials 11 (2) (2004) 63–69.
doi:10.1023/B:JOPO.0000027361.04282.f6.
[39] N. P. Brandon, D. J. Brett, Engineering porous materials for fuel
cell applications, Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences 364 (1838) (2006) 147–159.
doi:10.1098/rsta.2005.1684.
[40] K. Czelej, K. Cwieka, J. C. Colmenares, K. Kurzydłowski, Atomistic
insight into the electrode reaction mechanism of cathode in Molten
Carbonate Fuel Cell, J. Mater. Chem. A 5 (26) (2017) 13763–13768.
doi:10.1039/c7ta02011b.
[41] K. Czelej, K. Cwieka, J. C. Colmenares, K. J. Kurzydlowski,
Catalytic activity of NiO cathode in molten carbonate fuel
cells, Applied Catalysis B: Environmental 222 (2018) 73–75.
doi:10.1016/j.apcatb.2017.10.003.
[42] R. O’Hayre, D. M. Barnett, F. B. Prinz, The triple phase boundary.
a mathematical model and experimental investigations for fuel cells,
Journal of The Electrochemical Society 152 (2) (2005) A439–A444.
doi:10.1149/1.1851054.
[43] S. Zhang, A. M. Gokhale, Computer simulations of topological connectivity
of the triple phase boundaries in solid oxide fuel cell composite
cathodes, Journal of Power Sources 219 (2012) 172–179.
doi:10.1016/j.jpowsour.2012.07.049.
[44] V. M. Janardhanan, V. Heuveline, O. Deutschmann, Threephase
boundary length in solid-oxide fuel cells: A mathematical
model, Journal of Power Sources 178 (1) (2008) 368–372.
doi:10.1016/j.jpowsour.2007.11.083.
[45] T. Wejrzanowski, J. Gluch, S. H. Ibrahim, K. Cwieka, J. Milewski,
E. Zschech, Characterization of spatial distribution of electrolyte in
molten carbonate fuel cell cathodes, Advanced Engineering Materials
(2018) 1700909.doi:10.1002/adem.201700909.
[46] J. R. Selman, Research, development, and demonstration of molten
carbonate fuel cell systems, Springer US, Boston, MA, 1993, pp. 345–
463.
[47] D. Stoyan, A. Wagner, H. Hermann, A. Elsner, Statistical characterization
of the pore space of random systems of hard spheres,
Journal of Non-Crystalline Solids 357 (6) (2011) 1508–1515.
doi:10.1016/j.jnoncrysol.2010.12.033.
[48] H. Hermann, A. Elsner, M. Hecker, D. Stoyan, Computer simulated
dense-random packing models as approach to the structure of porous
low-k dielectrics, Microelectronic Engineering 81 (2-4) (2005) 535–
543. doi:10.1016/j.mee.2005.03.058.
[49] A. Bezrukov, M. Bargieł, D. Stoyan, Statistical analysis of simulated
random packings of spheres, Particle and Particle Systems Characterization
19 (2) (2002) 111–118. doi:10.1002/ppsc.200600974.
[50] T. Wejrzanowski, S. H. Ibrahim, J. Skibinski, K. Cwieka, K. J.
Kurzydlowski, Appropriate models for simulating open-porous materials,
Image Analysis and Stereology 36 (2) (2017) 107–112.
doi:10.5566/ias.1649.
[51] T. Wejrzanowski, S. H. Ibrahim, K. Cwieka, J. Milewski, K. J. Kurzydlowski,
Design of open-porous materials for high-temperature fuel
cells, Journal of Power Technologies 96 (3) (2016) 178–182.
[52] T. Wejrzanowski, J. Skibinski, J. Szumbarski, K. J. Kurzydlowski,
Structure of foams modeled by Laguerre-Voronoi tessellations,
Computational Materials Science 67 (2013) 216–221.
doi:10.1016/j.commatsci.2012.08.046.
[53] H. Viet, P. Nguyen, M. Roslee, D. Seo, S. Pil, H. Chul,
S. Woo, J. Han, J. Kim, Nano Ni layered anode for enhanced
MCFC performance at reduced operating temperature, International
Journal of Hydrogen Energy 39 (23) (2014) 12285–12290.
doi:10.1016/j.ijhydene.2014.03.253.
Published
2018-08-07
How to Cite
ĆWIEKA, Karol et al.
Effect of anode porosity on the performance of molten carbonate fuel cell.
Journal of Power Technologies, [S.l.], v. 98, n. 2, p. 228–237, aug. 2018.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1339>. Date accessed: 03 dec. 2024.
Issue
Section
Materials Science
Keywords
anode, porosity, microstructure, performance, MCFC, modeling and simulation
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).