Forecast of global solar irradiation with a perfect model according to incline angle
Abstract
The purpose of this study is to find and develop a model for measuring global solar irradiation at various angles from 0 to90. Through empirical studies, a suitable model for the studied site at Ouled Djellal, Biskra (Algeria) was developed, withpreliminary data to be used in thermal simulation software for building and simulation of solar energy systems. The results ofthe proposed model were compared with the experimental data and there was excellent correlation.References
[1] C. P. de Brichambaut, C. Vauge, Le gisement solaire: Evaluation de la
ressource énergétique, Tec & Doc, 1982.
[2] S. Barbaro, S. Coppolino, C. Leone, E. Sinagra, An atmospheric model
for computing direct and diffuse solar radiation, Solar Energy 22 (3)
(1979) 225–228.
[3] M. Krarti, J. Huang, D. Seo, J. Dark, Development of solar radiation
models for tropical locations, Tech. rep., Draft final report (June 30
2006).
[4] M. Daguenet, Les séchoirs solaires, Unesco, 1985.
[5] A. Dumas, A. Andrisani, M. Bonnici, G. Graditi, G. Leanza, M. Madonia,
M. Trancossi, A new correlation between global solar energy radiation
and daily temperature variations, Solar Energy 116 (2015) 117–
124.
[6] J.-K. Park, A. Das, J.-H. Park, A new approach to estimate the spatial
distribution of solar radiation using topographic factor and sunshine duration
in south korea, Energy Conversion and Management 101 (2015)
30–39.
[7] R. Benson, M. Paris, J. Sherry, C. Justus, Estimation of daily and
monthly direct, diffuse and global solar radiation from sunshine duration
measurements, Solar energy 32 (4) (1984) 523–535.
[8] J. Gariepy, Estimation of global solar radiation, International report,
Service of Meteorology, Canada (1980).
[9] J. Almorox, C. Hontoria, Global solar radiation estimation using sunshine
duration in spain, Energy Conversion and Management 45 (9-
10) (2004) 1529–1535.
[10] T. Samuel, Estimation of global radiation for sri lanka, Solar Energy
(Journal of Solar Energy Science and Engineering) 47 (5) (1991) 333–
337.
[11] M. Trnka, Z. Žalud, J. Eitzinger, M. Dubrovsk`y, Global solar radiation
in central european lowlands estimated by various empirical formulae,
Agricultural and Forest Meteorology 131 (1-2) (2005) 54–76.
[12] H. C. Power, Estimating clear-sky beam irradiation from sunshine duration,
Solar Energy 71 (4) (2001) 217–224.
[13] C. Tiba, Solar radiation in the brazilian northeast, Renewable Energy
22 (4) (2001) 565–578.
[14] M.-F. Li, X.-P. Tang, W. Wu, H.-B. Liu, General models for estimating
daily global solar radiation for different solar radiation zones in mainland
china, Energy conversion and management 70 (2013) 139–148.
[15] A. Katiyar, C. K. Pandey, Simple correlation for estimating the global
solar radiation on horizontal surfaces in india, Energy 35 (12) (2010)
5043–5048.
[16] K. Yang, G. Huang, N. Tamai, A hybrid model for estimating global
solar radiation, Solar energy 70 (1) (2001) 13–22.
[17] J. K. Yohanna, I. N. Itodo, V. I. Umogbai, A model for determining the
global solar radiation for makurdi, nigeria, Renewable Energy 36 (7)
(2011) 1989–1992.
[18] D. B. Ampratwum, A. S. Dorvlo, Estimation of solar radiation from the
number of sunshine hours, Applied Energy 63 (3) (1999) 161–167.
[19] A. Maghrabi, Parameterization of a simple model to estimate monthly
global solar radiation based on meteorological variables, and evaluation
of existing solar radiation models for tabouk, saudi arabia, Energy
conversion and management 50 (11) (2009) 2754–2760.
[20] J. Almorox, M. Benito, C. Hontoria, Estimation of monthly angström–
prescott equation coefficients from measured daily data in toledo,
spain, Renewable Energy 30 (6) (2005) 931–936.
[21] H. Duzen, H. Aydin, Sunshine-based estimation of global solar radiation
on horizontal surface at lake van region (turkey), Energy Conversion
and Management 58 (2012) 35–46.
[22] T. Muneer, M. Gul, Evaluation of sunshine and cloud cover based models
for generating solar radiation data, Energy Conversion and Management
41 (5) (2000) 461–482.
[23] F. Chabane, N. Moummi, S. Benramache, Experimental study of heat
transfer and thermal performance with longitudinal fins of solar air
heater, Journal of advanced research 5 (2) (2014) 183–192.
[24] F. Chabane, N. Moummi, S. Benramache, A. S. Tolba, Experimental
study of heat transfer and an effect the tilt angle with variation of the
mass flow rates on the solar air heater, Int J Sci Eng Invest 1 (9) (2012)
61–5.
[25] F. Chabane, N. Moummi, S. Benramache, Experimental performance
of solar air heater with internal fins inferior an absorber plate: in the region
of biskra, Journal of Energy Resources Technology 4 (33) (2012)
1–6.
[26] N. Moummi, F. Chabane, S. Benramache, A. Brima, Thermal efficiency
analysis of a single-flow solar air heater with different mass flow rates
in a smooth plate, Frontiers in Heat and Mass Transfer (FHMT) 4 (1)
(2013) 013006.
[27] F. Chabane, N. Moummi, S. Benramache, D. Bensahal, O. Belahssen,
Collector efficiency by single pass of solar air heaters with and without
using fins, Engineering journal 17 (3) (2013) 43–55.
[28] F. Chabane, N. Moummi, S. Benramache, Effect of the tilt angle of
natural convection in a solar collector with internal longitudinal fins,
International Journal of Science and Engineering Investigations 1 (7)
(2012) 13–17.
[29] F. Chabane, N. Moummi, S. Benramache, Experimental analysis on
thermal performance of a solar air collector with longitudinal fins in a
region of biskra, algeria, Journal of Power Technologies 93 (1) (2013)
52–58.
[30] F. Chabane, N. Moummi, S. Benramache, D. Bensahal, O. Belahssan,
Nusselt number correlation of SAH, Journal of Power Technologies
93 (2) (2013) 100–110.
[31] F. Chabane, N. Moummi, Heat transfer and energy analysis of a solar
air collector with smooth plate, The European Physical Journal-Applied
Physics 66 (1) (2014) 10901.
[32] F. Chabane, N. Hatraf, N. Moummi, Experimental study of heat transfer
coefficient with rectangular baffle fin of solar air heater, Frontiers in
Energy 8 (2) (2014) 160–172.
ressource énergétique, Tec & Doc, 1982.
[2] S. Barbaro, S. Coppolino, C. Leone, E. Sinagra, An atmospheric model
for computing direct and diffuse solar radiation, Solar Energy 22 (3)
(1979) 225–228.
[3] M. Krarti, J. Huang, D. Seo, J. Dark, Development of solar radiation
models for tropical locations, Tech. rep., Draft final report (June 30
2006).
[4] M. Daguenet, Les séchoirs solaires, Unesco, 1985.
[5] A. Dumas, A. Andrisani, M. Bonnici, G. Graditi, G. Leanza, M. Madonia,
M. Trancossi, A new correlation between global solar energy radiation
and daily temperature variations, Solar Energy 116 (2015) 117–
124.
[6] J.-K. Park, A. Das, J.-H. Park, A new approach to estimate the spatial
distribution of solar radiation using topographic factor and sunshine duration
in south korea, Energy Conversion and Management 101 (2015)
30–39.
[7] R. Benson, M. Paris, J. Sherry, C. Justus, Estimation of daily and
monthly direct, diffuse and global solar radiation from sunshine duration
measurements, Solar energy 32 (4) (1984) 523–535.
[8] J. Gariepy, Estimation of global solar radiation, International report,
Service of Meteorology, Canada (1980).
[9] J. Almorox, C. Hontoria, Global solar radiation estimation using sunshine
duration in spain, Energy Conversion and Management 45 (9-
10) (2004) 1529–1535.
[10] T. Samuel, Estimation of global radiation for sri lanka, Solar Energy
(Journal of Solar Energy Science and Engineering) 47 (5) (1991) 333–
337.
[11] M. Trnka, Z. Žalud, J. Eitzinger, M. Dubrovsk`y, Global solar radiation
in central european lowlands estimated by various empirical formulae,
Agricultural and Forest Meteorology 131 (1-2) (2005) 54–76.
[12] H. C. Power, Estimating clear-sky beam irradiation from sunshine duration,
Solar Energy 71 (4) (2001) 217–224.
[13] C. Tiba, Solar radiation in the brazilian northeast, Renewable Energy
22 (4) (2001) 565–578.
[14] M.-F. Li, X.-P. Tang, W. Wu, H.-B. Liu, General models for estimating
daily global solar radiation for different solar radiation zones in mainland
china, Energy conversion and management 70 (2013) 139–148.
[15] A. Katiyar, C. K. Pandey, Simple correlation for estimating the global
solar radiation on horizontal surfaces in india, Energy 35 (12) (2010)
5043–5048.
[16] K. Yang, G. Huang, N. Tamai, A hybrid model for estimating global
solar radiation, Solar energy 70 (1) (2001) 13–22.
[17] J. K. Yohanna, I. N. Itodo, V. I. Umogbai, A model for determining the
global solar radiation for makurdi, nigeria, Renewable Energy 36 (7)
(2011) 1989–1992.
[18] D. B. Ampratwum, A. S. Dorvlo, Estimation of solar radiation from the
number of sunshine hours, Applied Energy 63 (3) (1999) 161–167.
[19] A. Maghrabi, Parameterization of a simple model to estimate monthly
global solar radiation based on meteorological variables, and evaluation
of existing solar radiation models for tabouk, saudi arabia, Energy
conversion and management 50 (11) (2009) 2754–2760.
[20] J. Almorox, M. Benito, C. Hontoria, Estimation of monthly angström–
prescott equation coefficients from measured daily data in toledo,
spain, Renewable Energy 30 (6) (2005) 931–936.
[21] H. Duzen, H. Aydin, Sunshine-based estimation of global solar radiation
on horizontal surface at lake van region (turkey), Energy Conversion
and Management 58 (2012) 35–46.
[22] T. Muneer, M. Gul, Evaluation of sunshine and cloud cover based models
for generating solar radiation data, Energy Conversion and Management
41 (5) (2000) 461–482.
[23] F. Chabane, N. Moummi, S. Benramache, Experimental study of heat
transfer and thermal performance with longitudinal fins of solar air
heater, Journal of advanced research 5 (2) (2014) 183–192.
[24] F. Chabane, N. Moummi, S. Benramache, A. S. Tolba, Experimental
study of heat transfer and an effect the tilt angle with variation of the
mass flow rates on the solar air heater, Int J Sci Eng Invest 1 (9) (2012)
61–5.
[25] F. Chabane, N. Moummi, S. Benramache, Experimental performance
of solar air heater with internal fins inferior an absorber plate: in the region
of biskra, Journal of Energy Resources Technology 4 (33) (2012)
1–6.
[26] N. Moummi, F. Chabane, S. Benramache, A. Brima, Thermal efficiency
analysis of a single-flow solar air heater with different mass flow rates
in a smooth plate, Frontiers in Heat and Mass Transfer (FHMT) 4 (1)
(2013) 013006.
[27] F. Chabane, N. Moummi, S. Benramache, D. Bensahal, O. Belahssen,
Collector efficiency by single pass of solar air heaters with and without
using fins, Engineering journal 17 (3) (2013) 43–55.
[28] F. Chabane, N. Moummi, S. Benramache, Effect of the tilt angle of
natural convection in a solar collector with internal longitudinal fins,
International Journal of Science and Engineering Investigations 1 (7)
(2012) 13–17.
[29] F. Chabane, N. Moummi, S. Benramache, Experimental analysis on
thermal performance of a solar air collector with longitudinal fins in a
region of biskra, algeria, Journal of Power Technologies 93 (1) (2013)
52–58.
[30] F. Chabane, N. Moummi, S. Benramache, D. Bensahal, O. Belahssan,
Nusselt number correlation of SAH, Journal of Power Technologies
93 (2) (2013) 100–110.
[31] F. Chabane, N. Moummi, Heat transfer and energy analysis of a solar
air collector with smooth plate, The European Physical Journal-Applied
Physics 66 (1) (2014) 10901.
[32] F. Chabane, N. Hatraf, N. Moummi, Experimental study of heat transfer
coefficient with rectangular baffle fin of solar air heater, Frontiers in
Energy 8 (2) (2014) 160–172.
Published
2018-11-02
How to Cite
CHABANE, Foued et al.
Forecast of global solar irradiation with a perfect model according to incline angle.
Journal of Power Technologies, [S.l.], v. 98, n. 3, p. 245–254, nov. 2018.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1138>. Date accessed: 22 dec. 2024.
Issue
Section
Renewable and Sustainable Energy
Keywords
experimental study, solar irradiation, tilt angles, predicted model.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).