Sensitivity analysis of main parameters of pressurized SOFC hybrid system
Abstract
The paper presents a sensitivity analysis of a pressurized SOFC–HS system. The systems are divided into two groups:atmospheric and pressurized. The main parameter of such systems are indicated and commented. The comparison ofvarious configurations is shown in a view of efficiency obtained. The ultra high efficiency (65% HHV, 72% LHV) of electricityproduction seems to be possible by systems like these.References
[1] M. Afrand, A. A. Nadooshan, M. Hassani, H. Yarmand, M. Dahari,
Predicting the viscosity of multi-walled carbon nanotubes/water
nanofluid by developing an optimal artificial neural network
based on experimental data, INTERNATIONAL COMMUNICATIONS
IN HEAT AND MASS TRANSFER 77 (2016) 49–53.
doi:10.1016/j.icheatmasstransfer.2016.07.008.
[2] M. A. Ansari, S. M. A. Rizvi, S. Khan, Optimization of Electrochemical
Performance of a Solid Oxide Fuel Cell using Artificial Neural Network,
in: 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS,
AND OPTIMIZATION TECHNIQUES (ICEEOT), DMI Coll
Engn; IEEE DMI Coll Student Branch, 2016, pp. 4230–4234, International
Conference on Electrical, Electronics, and Optimization Techniques
(ICEEOT), Palnchur, INDIA, MAR 03-05, 2016.
[3] M. Kamvar, M. Ghassemi, M. Rezaei, Effect of catalyst layer
configuration on single chamber solid oxide fuel cell performance,
APPLIED THERMAL ENGINEERING 100 (2016) 98–104.
doi:10.1016/j.applthermaleng.2016.01.128.
[4] X. Lv, C. Gu, X. Liu, Y. Weng, Effect of gasified biomass fuel
on load characteristics of an intermediate-temperature solid oxide
fuel cell and gas turbine hybrid system, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (22) (2016) 9563–9576.
doi:10.1016/j.ijhydene.2016.04.104.
[5] A. Majedi, A. Abbasi, F. Davar, Green synthesis of zirconia nanoparticles
using the modified Pechini method and characterization of its
optical and electrical properties, JOURNAL OF SOL-GEL SCIENCE
AND TECHNOLOGY 77 (3) (2016) 542–552. doi:10.1007/s10971-
015-3881-3.
[6] D. Marra, C. Pianese, P. Polverino, M. Sorrentino, Models for Solid Oxide
Fuel Cell Systems Exploitation of Models Hierarchy for Industrial
Design of Control and Diagnosis Strategies Introduction, in: MODELS
FOR SOLID OXIDE FUEL CELL SYSTEMS: EXPLOITATION
OF MODELS HIERARCHY FOR INDUSTRIAL DESIGN OF CONTROL
AND DIAGNOSIS STRATEGIES, Green Energy and Technology,
2016, pp. 1–26. doi:10.1007/978-1-4471-5658-1_1.
[7] M. Mehrpooya, H. Dehghani, S. M. A. Moosavian, Optimal design
of solid oxide fuel cell, ammonia-water single effect absorption cycle
and Rankine steam cycle hybrid system, JOURNAL OF POWER
SOURCES 306 (2016) 107–123. doi:10.1016/j.jpowsour.2015.11.103.
[8] R. Peters, R. Deja, M. Engelbracht, M. Frank, V. N. Nguyen, L. Blum,
D. Stolten, Efficiency analysis of a hydrogen-fueled solid oxide fuel
cell system with anode off-gas recirculation, JOURNAL OF POWER
SOURCES 328 (2016) 105–113. doi:10.1016/j.jpowsour.2016.08.002.
[9] M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Solid Oxide Fuel Cells
coupled with a biomass gasification unit, in: Filipowicz, M and Dudek,
M and Olkuski, T and Styszko, K (Ed.), 1ST INTERNATIONAL CONFERENCE
ON THE SUSTAINABLE ENERGY AND ENVIRONMENT
DEVELOPMENT (SEED 2016), Vol. 10 of E3S Web of Conferences,
Head Minist Sci & Higher Educ; Minist Energy; Minist Environm; Natl
Fund Environm Protect & Water Management; Energy Regulatory Off;
Natl Ctr Res & Dev; Head Malopolska Prov Off; Marshal Malopolska
Reg; Municipality Krakow; Natl Contact Point; AGH UST Rector;
EDFPolska; Cieplo Krakowa; CC Poland Plus; MetalERG; RWE Polska;
Fdn Inst Sustainable Energy; AGH UST, Fac Energy & Fuels,
2016, 1st International Conference on the Sustainable Energy and Environment
Development (SEED), Krakow, POLAND, MAY 17-19, 2016.
doi:10.1051/e3sconf/20161000115.
[10] K. Zouhri, S.-Y. Lee, Tubular SOFC air electrode ohmic overpotential:
Parametric and exergy study, ENERGY CONVERSION AND MANAGEMENT
121 (2016) 1–12. doi:10.1016/j.enconman.2016.04.098.
[11] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong,
S. Lee, A heuristic method of variable selection based on principal
component analysis and factor analysis for monitoring in a 300 kw mcfc
power plant, International Journal of Hydrogen Energy 37 (15) (2012)
11394–11400.
[12] E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling
of molten carbonate fuel cells: Effects of cathode water and electrode
materials, JOURNAL OF POWER SOURCES 330 (2016) 18–27.
doi:10.1016/j.jpowsour.2016.08.123.
[13] M. Della Pietra, G. Discepoli, B. Bosio, S. J. McPhail, L. Barelli, G. Bidini,
A. Ribes-Greus, Experimental investigation of SO2 poisoning in a
Molten Carbonate Fuel Cell operating in CCS configuration, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (41) (2016) 18822–
18836, 3rd International Workshop on Molten Carbonates and Related
Topics (IWMC), NE Univ, Shenyang, PEOPLES R CHINA, JUN 11-13,
2015. doi:10.1016/j.ijhydene.2016.05.147.
[14] L. Duan, L. Yue, T. Feng, H. Lu, J. Bian, Study on a novel pressurized
MCFC hybrid system with CO2 capture, ENERGY 109 (2016) 737–
750. doi:10.1016/j.energy.2016.05.074.
[15] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable
energy applications: Part II. Review of recent literature, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (42) (2016) 18971–
18994. doi:10.1016/j.ijhydene.2016.08.076.
[16] F. Golzar, M. Astaneh, R. Roshandel, A. B. Forough, Reducing CO2
emission from exhaust gases using molten carbonate fuel cells: a
new approach, INTERNATIONAL JOURNAL OF AMBIENT ENERGY
37 (4) (2016) 331–340. doi:10.1080/01430750.2014.963206.
[17] C. Huang, Y. Pan, Y. Wang, G. Su, J. Chen, An efficient hybrid system
using a thermionic generator to harvest waste heat from a reforming
molten carbonate fuel cell, ENERGY CONVERSION AND MANAGEMENT
121 (2016) 186–193. doi:10.1016/j.enconman.2016.05.028.
[18] P. Jienkulsawad, A. Arpornwichanop, Investigating the performance
of a solid oxide fuel cell and a molten carbonate
fuel cell combined system, ENERGY 107 (2016) 843–853.
doi:10.1016/j.energy.2016.04.072.
[19] S. Samanta, S. Ghosh, A thermo-economic analysis of repowering
of a 250 MW coal fired power plant through integration of
Molten Carbonate Fuel Cell with carbon capture, INTERNATIONAL
JOURNAL OF GREENHOUSE GAS CONTROL 51 (2016) 48–55.
doi:10.1016/j.ijggc.2016.04.021.
[20] E. Audasso, B. Bosio, S. Nam, Extension of an effective MCFC kinetic
model to a wider range of operating conditions, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (12) (2016) 5571–5581.
doi:10.1016/j.ijhydene.2015.10.152.
[21] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model
of molten carbonate fuel cell: A proposal, International Journal of Hydrogen
Energy 38 (26) (2013) 11565–11575.
[22] G. Rey, C. Ulloa, J. Luis Miguez, E. Arce, Development of an ICEBased
Micro-CHP System Based on a Stirling Engine; Methodology
for a Comparative Study of its Performance and Sensitivity Analysis
in Recreational Sailing Boats in Different European Climates, ENERGIES
9 (4). doi:10.3390/en9040239.
[23] A. Chmielewski, R. Guminski, J. Maczak, S. Radkowski, P. Szulim,
Aspects of balanced development of RES and distributed microcogeneration
use in Poland: Case study of a mu CHP with Stirling engine,
RENEWABLE & SUSTAINABLE ENERGY REVIEWS 60 (2016)
930–952. doi:10.1016/j.rser.2016.01.131.
[24] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a
natural gas fuelled piston engine working in distributed generation system,
Rynek Energii (3) (2011) 33–40.
[25] D. McLarty, J. Brouwer, C. Ainscough, Economic analysis of fuel cell
installations at commercial buildings including regional pricing and
complementary technologies, ENERGY AND BUILDINGS 113 (2016)
112–122. doi:10.1016/j.enbuild.2015.12.029.
[26] L. Romero Rodriguez, J. M. Salmeron Lissen, J. Sanchez Ramos,
E. A. Rodriguez Jara, S. Alvarez Dominguez, Analysis of the economic
feasibility and reduction of a building’s energy consumption
and emissions when integrating hybrid solar thermal/PV/micro-
CHP systems, APPLIED ENERGY 165 (2016) 828–838.
doi:10.1016/j.apenergy.2015.12.080.
[27] H.Wu, L.-j. Yang, J.-p. Yan, G.-x. Hong, B. Yang, Improving the removal
of fine particles by heterogeneous condensation during WFGD processes,
FUEL PROCESSING TECHNOLOGY 145 (2016) 116–122.
doi:10.1016/j.fuproc.2016.01.033.
[28] . Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a supercritical
coal-fired heat and power plant with carbon capture installation and
gas turbine, Rynek Energii 100 (3) (2012) 56–62.
[29] R. Laskowski, A. Smyk, A. Rusowicz, A. Grzebielec, Determining
the Optimum Inner Diameter of Condenser Tubes Based on Thermodynamic
Objective Functions and an Economic Analysis, ENTROPY
18 (12). doi:10.3390/e18120444.
[30] M. Wołowicz, J. Milewski, K. Futyma, W. Bujalski, Boosting the efficiency
of an 800 mw-class power plant through utilization of low temperature
heat of flue gases, in: Applied Mechanics and Materials, Vol.
483, Trans Tech Publ, 2014, pp. 315–321.
[31] J. Kotowicz, M. Jurczyk, D.Wecel,W. Ogulewicz, Analysis of Hydrogen
Production in Alkaline Electrolyzers, JOURNAL OF POWER TECHNOLOGIES
96 (3) (2016) 149–156.
[32] J. Kupecki, J. Jewulski, K. Badyda, Comparative study of biogas and
dme fed micro-chp system with solid oxide fuel cell, Applied Mechanics
and Materials 267 (2013) 53–56.
[33] W. Budzianowski, Sustainable biogas energy in poland: Prospects and
challenges, Renewable and Sustainable Energy Reviews 16 (1) (2012)
342–349.
[34] P. Krawczyk, Control strategy for ventilation system of sewage sludge
solar dryer, JOURNAL OF POWER TECHNOLOGIES 96 (2) (2016)
145–148.
[35] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, K. Dubiel, Use of a
gas turbine in a hybrid power plant integrated with an electrolyser,
biomass gasification generator and methanation reactor, JOURNAL
OF POWER TECHNOLOGIES 96 (2) (2016) 73–80.
[36] I.-S. Han, C.-B. Chung, Performance prediction and analysis of a PEM
fuel cell operating on pure oxygen using data-driven models: A comparison
of artificial neural network and support vector machine, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (24) (2016)
10202–10211. doi:10.1016/j.ijhydene.2016.04.247.
[37] M. Beltran-Gastelum, M. I. Salazar-Gastelum, R. M. Felix-Navarro,
S. Perez-Sicairos, E. A. Reynoso-Soto, S. W. Lin, J. R.
Flores-Hernandez, T. Romero-Castanon, I. L. Albarran-Sanchez,
F. Paraguay-Delgado, Evaluation of Pt-Au/MWCNT (Multiwalled Carbon
Nanotubes) electrocatalyst performance as cathode of a proton
exchange membrane fuel cell, ENERGY 109 (2016) 446–455.
doi:10.1016/j.energy.2016.04.132.
[38] L. Barelli, G. Bidini, A. Ottaviano, Part load operation of a sofc/gt hybrid
system: Dynamic analysis, Applied Energy 110 (0) (2013) 173 – 189.
[39] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic
numerical analysis of cross-, co-, and counter-current flow configuration
of a 1 kw-class solid oxide fuel cell stack, International Journal
of Hydrogen Energy 40 (45) (2015) 15834–15844.
[40] M. Santin, A. Traverso, L. Magistri, A. Massardo, Thermoeconomic
analysis of sofc-gt hybrid systems fed by liquid fuels, Energy
35 (2) (2010) 1077 – 1083,ECOS 2008
21st International Conference, on Efficiency, Cost,
Optimization, Simulation and Environmental Impact of Energy
Systems .
[41] M. Sucipta, S. Kimijima, K. Suzuki, Performance analysis of the
SOFC–MGT hybrid system with gasified biomass fuel, Journal of
Power Sources 174 (1) (2007) 124 – 135,Hybrid Electric Vehicles
ce:title>.
[42] S. Chan, H. Ho, Y. Tian, Multi-level modeling of sofc–gas turbine hybrid
system, International Journal of Hydrogen Energy 28 (8) (2003) 889 –
900.
[43] T. W. Song, J. L. Sohn, T. S. Kim, S. T. Ro, Performance characteristics
of a mw-class sofc/gt hybrid system based on a commercially available
gas turbine, Journal of Power Sources 158 (1) (2006) 361 – 367.
[44] F. Calise, M. D. d Accadia, A. Palombo, L. Vanoli, Simulation and exergy
analysis of a hybrid solid oxide fuel cell (sofc)–gas turbine system,
Energy 31 (15) (2006) 3278 – 3299,ECOS 2004 - 17th International
Conference on Efficiency, Costs, Optimization, Simulation,
and Environmental Impact of Energy on Process Systems
17th International Conference on Efficiency, Costs,
Optimization, Simulation, and Environmental Impact of Energy on Process
Systems .
[45] W. R. Dunbar, N. Lior, R. A. Gaggioli, Combining fuel cells with fuelfired
power plants for improved exergy efficiency, Energy 16 (10)
(1991) 1259 – 1274.
[46] W. Dunbar, N. Lior, R. Gaggioli, Effect of the fuel-cell unit size on the
efficiency of a fuel-cell-topped rankine power cycle, Journal of Energy
Resources Technology, Transactions of the ASME 115 (2) (1993) 105–
107, cited By (since 1996)8.
[47] S. Chan, C. Low, O. Ding, Energy and exergy analysis of simple
solid-oxide fuel-cell power systems, Journal of Power Sources 103 (2)
(2002) 188 – 200.
[48] L. Larosa, A. Traverso, M. L. Ferrari, V. Zaccaria, Pressurized sofc
hybrid systems: Control system study and experimental verification,
Journal of Engineering for Gas Turbines and Power 137 (3) (2015)
031602.
[49] L. Larosa, A. Traverso, V. Zaccaria, AMBIENT TEMPERATURE IMPACT
ON PRESSURIZED SOFC HYBRID SYSTEMS, in: ASME
TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION,
2015, VOL 3, Int Gas Turbine Inst, 2015, ASME Turbo Expo:
Turbine Technical Conference and Exposition, Montreal, CANADA,
JUN 15-19, 2015.
[50] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,
Variant analysis of the structure and parameters of sofc hybrid systems,
in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,
2013, pp. 306–312.
[51] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and
fuel cell: Matching considerations and performance evaluation, Applied
Energy 103 (2013) 607–617.
[52] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni, M. Navarra,
E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial
neural network modeling of proton exchange membrane fuel cells
based on nanocomposite and recast nafion membranes, International
Journal of Energy Research 37 (4) (2013) 347–357.
[53] L. Barelli, G. Bidini, S. Campanari, G. Discepoli, M. Spinelli, Performance
assessment of natural gas and biogas fueled molten carbonate
fuel cells in carbon capture configuration, JOURNAL OF POWER
SOURCES 320 (2016) 332–342. doi:10.1016/j.jpowsour.2016.04.071.
[54] L. Bartela, J. Kotowicz, K. Dubiel, Technical - economic comparative
analysis of energy storage systems equipped with a hydrogen generation
installation, JOURNAL OF POWER TECHNOLOGIES 96 (2)
(2016) 92–100.
[55] S. Bozorgmehri, M. Hamedi, Modeling and optimization of anodesupported
solid oxide fuel cells on cell parameters via artificial neural
network and genetic algorithm, Fuel Cells 12 (1) (2012) 11–23.
[56] D. A. Brunner, S. Marcks, M. Bajpai, A. K. Prasad, S. G. Advani, Design
and characterization of an electronically controlled variable flow
rate ejector for fuel cell applications, International Journal of Hydrogen
Energy 37 (5) (2012) 4457 – 4466.
[57] W. M. Budzianowski, A review of potential innovations for production,
conditioning and utilization of biogas with multiple-criteria assessment,
RENEWABLE & SUSTAINABLE ENERGY REVIEWS 54 (2016) 1148–
1171. doi:10.1016/j.rser.2015.10.054.
[58] W. M. Budzianowski, K. J. Budzianowska, D. S. Budzianowska, Analysis
of solutions alleviating CO2 emissions intensity of biogas technology,
INTERNATIONAL JOURNAL OF GLOBAL WARMING 9 (4)
(2016) 507–528.
[59] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat,
A. Arpornwichanop, Neural network hybrid model of a
direct internal reforming solid oxide fuel cell, International Journal of
Hydrogen Energy 37 (3) (2012) 2498–2508.
[60] S. H. Chan, J. P. Stempien, O. L. Ding, P.-C. Su, H. K. Ho,
Fuel cell and hydrogen technologies research, development and
demonstration activities in Singapore - An update, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (32) (2016) 13869–13878.
doi:10.1016/j.ijhydene.2016.05.192.
[61] A. Chmielewski, R. Guminski, J. Maczak, Selected properties of the
adiabatic model of the Stirling engine combined with the model of
the piston-crankshaft system, in: 2016 21ST INTERNATIONAL CONFERENCE
ON METHODS AND MODELS IN AUTOMATION AND
ROBOTICS (MMAR), 2016, pp. 543–548, 21st International Conference
on Methods and Models in Automation and Robotics (MMAR),
Miedzyzdroje, POLAND, AUG 29-SEP 01, 2016.
[62] A. Chmielewski, R. Guminski, J. Maczak, Dynamic model of a freepiston
Stirling engine with four degrees of freedom combined with the
thermodynamic submodel, in: 2016 21ST INTERNATIONAL CONFERENCE
ON METHODS AND MODELS IN AUTOMATION AND
ROBOTICS (MMAR), 2016, pp. 583–588, 21st International Conference
on Methods and Models in Automation and Robotics (MMAR),
Miedzyzdroje, POLAND, AUG 29-SEP 01, 2016.
[63] A. Chmielewski, R. Guminski, J. Maczak, P. Szulim, Model-based re-
search on a micro cogeneration system with Stirling engine, JOURNAL
OF POWER TECHNOLOGIES 96 (4) (2016) 295–305.
[64] C. Churiaque, M. R. Amaya-Vazquez, F. J. Botana, J. M. Sanchez-
Amaya, FEM Simulation and Experimental Validation of LBW Under
Conduction Regime of Ti6Al4V Alloy, JOURNAL OF MATERIALS ENGINEERING
AND PERFORMANCE 25 (8, SI) (2016) 3260–3269, International
Symposium on Metal-Matrix Composites as part of the European
Congress on Advanced Materials and Processes (EUROMAT),
Warsaw, POLAND, SEP 20-24, 2015. doi:10.1007/s11665-016-2214-
1.
[65] G. De Lorenzo, P. Fragiacomo, A methodology for improving the performance
of molten carbonate fuel cell/gas turbine hybrid systems, International
Journal of Energy Research 36 (1) (2012) 96–110.
[66] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture
with molten carbonate fuel cells: Experimental tests and fuel cell
performance assessment, International Journal of Greenhouse Gas
Control 9 (2012) 372–384.
[67] D. Grondin, J. Deseure, P. Ozil, J.-P. Chabriat, B. Grondin-Perez,
A. Brisse, Solid oxide electrolysis cell 3d simulation using artificial
neural network for cathodic process description, Chemical Engineering
Research and Design 91 (1) (2013) 134–140.
[68] E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration systems
based on lt-pemfc and ht-pemfc by energy balances, Applied
Energy 108 (2013) 82–91.
[69] K. Janusz-Szyma´nska, Economic efficiency of an igcc system integreted
with ccs installation [efektywno´s´c ekonomiczna układu gazowoparowego
zintegrowanego ze zgazowaniem we˛gla oraz z instalacjaa˛
CCS], Rynek Energii 102 (5) (2012) 24–30.
[70] H. Jeong, K. Park, J. Cho, Numerical analysis of variable polarity arc
weld pool, JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
30 (9) (2016) 4307–4313. doi:10.1007/s12206-016-0845-7.
[71] P. Krawczyk, L. Szablowski, K. Badyda, S. Karellas, E. Kakaras, Impact
of selected parameters on performance of the Adiabatic Liquid
Air Energy Storage system, JOURNAL OF POWER TECHNOLOGIES
96 (4) (2016) 238–244.
[72] J. Kupecki, K. Motylinski, M. Ferraro, F. Sergi, N. Zanon, Use of NaNiCl
battery for mitigation of SOFC stack cycling in base-load telecommunication
power system-a preliminary evaluation, JOURNAL OF POWER
TECHNOLOGIES 96 (1) (2016) 63–71.
[73] C.-G. Lee, D.-H. Kim, H.-C. Lim, Electrode reaction characteristics under
pressurized conditions in a molten carbonate fuel cell, Journal of
the Electrochemical Society 154 (4) (2007) B396–B404.
[74] X. Lv, X. Liu, C. Gu, Y. Weng, Determination of safe operation
zone for an intermediate-temperature solid oxide fuel cell
and gas turbine hybrid system, ENERGY 99 (2016) 91–102.
doi:10.1016/j.energy.2016.01.047.
[75] H. Marzooghi, M. Raoofat, M. Dehghani, G. Elahi, Dynamic modeling
of solid oxide fuel cell stack based on local linear model tree algorithm,
International Journal of Hydrogen Energy 37 (5) (2012) 4367–4376.
[76] J. Milewski, A mathematical model of sofc: A proposal, Fuel Cells
12 (5) (2012) 709–721.
[77] P. Pianko-Oprych, Z. Jaworski, Numerical modelling of the microtubular
solid oxide fuel cell stacks [przeglad metod modelowania
numerycznego mikrorurowych stał otlenkowych stosów ognhw paliwowych],
Przemysl Chemiczny 91 (9) (2012) 1813–1815.
[78] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement
of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as
an electronic blocking layer by pulsed laser deposition, International
Journal of Hydrogen Energy 38 (5) (2013) 2407–2412.
[79] D. Sánchez, B. Monje, R. Chacartegui, S. Campanari, Potential of
molten carbonate fuel cells to enhance the performance of chp plants
in sewage treatment facilities, International Journal of Hydrogen Energy
38 (1) (2013) 394–405.
[80] A. Sobolewski, . Bartela, A. Skorek-Osikowska, T. Iluk, Comparison of
the economic efficiency of chp plants integrated with gazela generator
[porównanie efektywno´sci ekonomicznej układów kogeneracyjnych z
generatorem gazu procesowego gazela], Rynek Energii 102 (5) (2012)
31–37.
[81] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application
of artificial neural networks (ann) for modeling of industrial hydrogen
plant, International Journal of Hydrogen Energy 38 (15) (2013) 6289–
6297.
Predicting the viscosity of multi-walled carbon nanotubes/water
nanofluid by developing an optimal artificial neural network
based on experimental data, INTERNATIONAL COMMUNICATIONS
IN HEAT AND MASS TRANSFER 77 (2016) 49–53.
doi:10.1016/j.icheatmasstransfer.2016.07.008.
[2] M. A. Ansari, S. M. A. Rizvi, S. Khan, Optimization of Electrochemical
Performance of a Solid Oxide Fuel Cell using Artificial Neural Network,
in: 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS,
AND OPTIMIZATION TECHNIQUES (ICEEOT), DMI Coll
Engn; IEEE DMI Coll Student Branch, 2016, pp. 4230–4234, International
Conference on Electrical, Electronics, and Optimization Techniques
(ICEEOT), Palnchur, INDIA, MAR 03-05, 2016.
[3] M. Kamvar, M. Ghassemi, M. Rezaei, Effect of catalyst layer
configuration on single chamber solid oxide fuel cell performance,
APPLIED THERMAL ENGINEERING 100 (2016) 98–104.
doi:10.1016/j.applthermaleng.2016.01.128.
[4] X. Lv, C. Gu, X. Liu, Y. Weng, Effect of gasified biomass fuel
on load characteristics of an intermediate-temperature solid oxide
fuel cell and gas turbine hybrid system, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (22) (2016) 9563–9576.
doi:10.1016/j.ijhydene.2016.04.104.
[5] A. Majedi, A. Abbasi, F. Davar, Green synthesis of zirconia nanoparticles
using the modified Pechini method and characterization of its
optical and electrical properties, JOURNAL OF SOL-GEL SCIENCE
AND TECHNOLOGY 77 (3) (2016) 542–552. doi:10.1007/s10971-
015-3881-3.
[6] D. Marra, C. Pianese, P. Polverino, M. Sorrentino, Models for Solid Oxide
Fuel Cell Systems Exploitation of Models Hierarchy for Industrial
Design of Control and Diagnosis Strategies Introduction, in: MODELS
FOR SOLID OXIDE FUEL CELL SYSTEMS: EXPLOITATION
OF MODELS HIERARCHY FOR INDUSTRIAL DESIGN OF CONTROL
AND DIAGNOSIS STRATEGIES, Green Energy and Technology,
2016, pp. 1–26. doi:10.1007/978-1-4471-5658-1_1.
[7] M. Mehrpooya, H. Dehghani, S. M. A. Moosavian, Optimal design
of solid oxide fuel cell, ammonia-water single effect absorption cycle
and Rankine steam cycle hybrid system, JOURNAL OF POWER
SOURCES 306 (2016) 107–123. doi:10.1016/j.jpowsour.2015.11.103.
[8] R. Peters, R. Deja, M. Engelbracht, M. Frank, V. N. Nguyen, L. Blum,
D. Stolten, Efficiency analysis of a hydrogen-fueled solid oxide fuel
cell system with anode off-gas recirculation, JOURNAL OF POWER
SOURCES 328 (2016) 105–113. doi:10.1016/j.jpowsour.2016.08.002.
[9] M. Skrzypkiewicz, M. Wierzbicki, M. Stepien, Solid Oxide Fuel Cells
coupled with a biomass gasification unit, in: Filipowicz, M and Dudek,
M and Olkuski, T and Styszko, K (Ed.), 1ST INTERNATIONAL CONFERENCE
ON THE SUSTAINABLE ENERGY AND ENVIRONMENT
DEVELOPMENT (SEED 2016), Vol. 10 of E3S Web of Conferences,
Head Minist Sci & Higher Educ; Minist Energy; Minist Environm; Natl
Fund Environm Protect & Water Management; Energy Regulatory Off;
Natl Ctr Res & Dev; Head Malopolska Prov Off; Marshal Malopolska
Reg; Municipality Krakow; Natl Contact Point; AGH UST Rector;
EDFPolska; Cieplo Krakowa; CC Poland Plus; MetalERG; RWE Polska;
Fdn Inst Sustainable Energy; AGH UST, Fac Energy & Fuels,
2016, 1st International Conference on the Sustainable Energy and Environment
Development (SEED), Krakow, POLAND, MAY 17-19, 2016.
doi:10.1051/e3sconf/20161000115.
[10] K. Zouhri, S.-Y. Lee, Tubular SOFC air electrode ohmic overpotential:
Parametric and exergy study, ENERGY CONVERSION AND MANAGEMENT
121 (2016) 1–12. doi:10.1016/j.enconman.2016.04.098.
[11] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong,
S. Lee, A heuristic method of variable selection based on principal
component analysis and factor analysis for monitoring in a 300 kw mcfc
power plant, International Journal of Hydrogen Energy 37 (15) (2012)
11394–11400.
[12] E. Arato, E. Audasso, L. Barelli, B. Bosio, G. Discepoli, Kinetic modelling
of molten carbonate fuel cells: Effects of cathode water and electrode
materials, JOURNAL OF POWER SOURCES 330 (2016) 18–27.
doi:10.1016/j.jpowsour.2016.08.123.
[13] M. Della Pietra, G. Discepoli, B. Bosio, S. J. McPhail, L. Barelli, G. Bidini,
A. Ribes-Greus, Experimental investigation of SO2 poisoning in a
Molten Carbonate Fuel Cell operating in CCS configuration, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (41) (2016) 18822–
18836, 3rd International Workshop on Molten Carbonates and Related
Topics (IWMC), NE Univ, Shenyang, PEOPLES R CHINA, JUN 11-13,
2015. doi:10.1016/j.ijhydene.2016.05.147.
[14] L. Duan, L. Yue, T. Feng, H. Lu, J. Bian, Study on a novel pressurized
MCFC hybrid system with CO2 capture, ENERGY 109 (2016) 737–
750. doi:10.1016/j.energy.2016.05.074.
[15] S. Frangini, A. Masi, Molten carbonates for advanced and sustainable
energy applications: Part II. Review of recent literature, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (42) (2016) 18971–
18994. doi:10.1016/j.ijhydene.2016.08.076.
[16] F. Golzar, M. Astaneh, R. Roshandel, A. B. Forough, Reducing CO2
emission from exhaust gases using molten carbonate fuel cells: a
new approach, INTERNATIONAL JOURNAL OF AMBIENT ENERGY
37 (4) (2016) 331–340. doi:10.1080/01430750.2014.963206.
[17] C. Huang, Y. Pan, Y. Wang, G. Su, J. Chen, An efficient hybrid system
using a thermionic generator to harvest waste heat from a reforming
molten carbonate fuel cell, ENERGY CONVERSION AND MANAGEMENT
121 (2016) 186–193. doi:10.1016/j.enconman.2016.05.028.
[18] P. Jienkulsawad, A. Arpornwichanop, Investigating the performance
of a solid oxide fuel cell and a molten carbonate
fuel cell combined system, ENERGY 107 (2016) 843–853.
doi:10.1016/j.energy.2016.04.072.
[19] S. Samanta, S. Ghosh, A thermo-economic analysis of repowering
of a 250 MW coal fired power plant through integration of
Molten Carbonate Fuel Cell with carbon capture, INTERNATIONAL
JOURNAL OF GREENHOUSE GAS CONTROL 51 (2016) 48–55.
doi:10.1016/j.ijggc.2016.04.021.
[20] E. Audasso, B. Bosio, S. Nam, Extension of an effective MCFC kinetic
model to a wider range of operating conditions, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (12) (2016) 5571–5581.
doi:10.1016/j.ijhydene.2015.10.152.
[21] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model
of molten carbonate fuel cell: A proposal, International Journal of Hydrogen
Energy 38 (26) (2013) 11565–11575.
[22] G. Rey, C. Ulloa, J. Luis Miguez, E. Arce, Development of an ICEBased
Micro-CHP System Based on a Stirling Engine; Methodology
for a Comparative Study of its Performance and Sensitivity Analysis
in Recreational Sailing Boats in Different European Climates, ENERGIES
9 (4). doi:10.3390/en9040239.
[23] A. Chmielewski, R. Guminski, J. Maczak, S. Radkowski, P. Szulim,
Aspects of balanced development of RES and distributed microcogeneration
use in Poland: Case study of a mu CHP with Stirling engine,
RENEWABLE & SUSTAINABLE ENERGY REVIEWS 60 (2016)
930–952. doi:10.1016/j.rser.2016.01.131.
[24] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a
natural gas fuelled piston engine working in distributed generation system,
Rynek Energii (3) (2011) 33–40.
[25] D. McLarty, J. Brouwer, C. Ainscough, Economic analysis of fuel cell
installations at commercial buildings including regional pricing and
complementary technologies, ENERGY AND BUILDINGS 113 (2016)
112–122. doi:10.1016/j.enbuild.2015.12.029.
[26] L. Romero Rodriguez, J. M. Salmeron Lissen, J. Sanchez Ramos,
E. A. Rodriguez Jara, S. Alvarez Dominguez, Analysis of the economic
feasibility and reduction of a building’s energy consumption
and emissions when integrating hybrid solar thermal/PV/micro-
CHP systems, APPLIED ENERGY 165 (2016) 828–838.
doi:10.1016/j.apenergy.2015.12.080.
[27] H.Wu, L.-j. Yang, J.-p. Yan, G.-x. Hong, B. Yang, Improving the removal
of fine particles by heterogeneous condensation during WFGD processes,
FUEL PROCESSING TECHNOLOGY 145 (2016) 116–122.
doi:10.1016/j.fuproc.2016.01.033.
[28] . Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a supercritical
coal-fired heat and power plant with carbon capture installation and
gas turbine, Rynek Energii 100 (3) (2012) 56–62.
[29] R. Laskowski, A. Smyk, A. Rusowicz, A. Grzebielec, Determining
the Optimum Inner Diameter of Condenser Tubes Based on Thermodynamic
Objective Functions and an Economic Analysis, ENTROPY
18 (12). doi:10.3390/e18120444.
[30] M. Wołowicz, J. Milewski, K. Futyma, W. Bujalski, Boosting the efficiency
of an 800 mw-class power plant through utilization of low temperature
heat of flue gases, in: Applied Mechanics and Materials, Vol.
483, Trans Tech Publ, 2014, pp. 315–321.
[31] J. Kotowicz, M. Jurczyk, D.Wecel,W. Ogulewicz, Analysis of Hydrogen
Production in Alkaline Electrolyzers, JOURNAL OF POWER TECHNOLOGIES
96 (3) (2016) 149–156.
[32] J. Kupecki, J. Jewulski, K. Badyda, Comparative study of biogas and
dme fed micro-chp system with solid oxide fuel cell, Applied Mechanics
and Materials 267 (2013) 53–56.
[33] W. Budzianowski, Sustainable biogas energy in poland: Prospects and
challenges, Renewable and Sustainable Energy Reviews 16 (1) (2012)
342–349.
[34] P. Krawczyk, Control strategy for ventilation system of sewage sludge
solar dryer, JOURNAL OF POWER TECHNOLOGIES 96 (2) (2016)
145–148.
[35] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, K. Dubiel, Use of a
gas turbine in a hybrid power plant integrated with an electrolyser,
biomass gasification generator and methanation reactor, JOURNAL
OF POWER TECHNOLOGIES 96 (2) (2016) 73–80.
[36] I.-S. Han, C.-B. Chung, Performance prediction and analysis of a PEM
fuel cell operating on pure oxygen using data-driven models: A comparison
of artificial neural network and support vector machine, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (24) (2016)
10202–10211. doi:10.1016/j.ijhydene.2016.04.247.
[37] M. Beltran-Gastelum, M. I. Salazar-Gastelum, R. M. Felix-Navarro,
S. Perez-Sicairos, E. A. Reynoso-Soto, S. W. Lin, J. R.
Flores-Hernandez, T. Romero-Castanon, I. L. Albarran-Sanchez,
F. Paraguay-Delgado, Evaluation of Pt-Au/MWCNT (Multiwalled Carbon
Nanotubes) electrocatalyst performance as cathode of a proton
exchange membrane fuel cell, ENERGY 109 (2016) 446–455.
doi:10.1016/j.energy.2016.04.132.
[38] L. Barelli, G. Bidini, A. Ottaviano, Part load operation of a sofc/gt hybrid
system: Dynamic analysis, Applied Energy 110 (0) (2013) 173 – 189.
[39] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic
numerical analysis of cross-, co-, and counter-current flow configuration
of a 1 kw-class solid oxide fuel cell stack, International Journal
of Hydrogen Energy 40 (45) (2015) 15834–15844.
[40] M. Santin, A. Traverso, L. Magistri, A. Massardo, Thermoeconomic
analysis of sofc-gt hybrid systems fed by liquid fuels, Energy
35 (2) (2010) 1077 – 1083,
Optimization, Simulation and Environmental Impact of Energy
Systems
[41] M. Sucipta, S. Kimijima, K. Suzuki, Performance analysis of the
SOFC–MGT hybrid system with gasified biomass fuel, Journal of
Power Sources 174 (1) (2007) 124 – 135,
ce:title>.
[42] S. Chan, H. Ho, Y. Tian, Multi-level modeling of sofc–gas turbine hybrid
system, International Journal of Hydrogen Energy 28 (8) (2003) 889 –
900.
[43] T. W. Song, J. L. Sohn, T. S. Kim, S. T. Ro, Performance characteristics
of a mw-class sofc/gt hybrid system based on a commercially available
gas turbine, Journal of Power Sources 158 (1) (2006) 361 – 367.
[44] F. Calise, M. D. d Accadia, A. Palombo, L. Vanoli, Simulation and exergy
analysis of a hybrid solid oxide fuel cell (sofc)–gas turbine system,
Energy 31 (15) (2006) 3278 – 3299,
Conference on Efficiency, Costs, Optimization, Simulation,
and Environmental Impact of Energy on Process Systems
Optimization, Simulation, and Environmental Impact of Energy on Process
Systems
[45] W. R. Dunbar, N. Lior, R. A. Gaggioli, Combining fuel cells with fuelfired
power plants for improved exergy efficiency, Energy 16 (10)
(1991) 1259 – 1274.
[46] W. Dunbar, N. Lior, R. Gaggioli, Effect of the fuel-cell unit size on the
efficiency of a fuel-cell-topped rankine power cycle, Journal of Energy
Resources Technology, Transactions of the ASME 115 (2) (1993) 105–
107, cited By (since 1996)8.
[47] S. Chan, C. Low, O. Ding, Energy and exergy analysis of simple
solid-oxide fuel-cell power systems, Journal of Power Sources 103 (2)
(2002) 188 – 200.
[48] L. Larosa, A. Traverso, M. L. Ferrari, V. Zaccaria, Pressurized sofc
hybrid systems: Control system study and experimental verification,
Journal of Engineering for Gas Turbines and Power 137 (3) (2015)
031602.
[49] L. Larosa, A. Traverso, V. Zaccaria, AMBIENT TEMPERATURE IMPACT
ON PRESSURIZED SOFC HYBRID SYSTEMS, in: ASME
TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION,
2015, VOL 3, Int Gas Turbine Inst, 2015, ASME Turbo Expo:
Turbine Technical Conference and Exposition, Montreal, CANADA,
JUN 15-19, 2015.
[50] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,
Variant analysis of the structure and parameters of sofc hybrid systems,
in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,
2013, pp. 306–312.
[51] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and
fuel cell: Matching considerations and performance evaluation, Applied
Energy 103 (2013) 607–617.
[52] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni, M. Navarra,
E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial
neural network modeling of proton exchange membrane fuel cells
based on nanocomposite and recast nafion membranes, International
Journal of Energy Research 37 (4) (2013) 347–357.
[53] L. Barelli, G. Bidini, S. Campanari, G. Discepoli, M. Spinelli, Performance
assessment of natural gas and biogas fueled molten carbonate
fuel cells in carbon capture configuration, JOURNAL OF POWER
SOURCES 320 (2016) 332–342. doi:10.1016/j.jpowsour.2016.04.071.
[54] L. Bartela, J. Kotowicz, K. Dubiel, Technical - economic comparative
analysis of energy storage systems equipped with a hydrogen generation
installation, JOURNAL OF POWER TECHNOLOGIES 96 (2)
(2016) 92–100.
[55] S. Bozorgmehri, M. Hamedi, Modeling and optimization of anodesupported
solid oxide fuel cells on cell parameters via artificial neural
network and genetic algorithm, Fuel Cells 12 (1) (2012) 11–23.
[56] D. A. Brunner, S. Marcks, M. Bajpai, A. K. Prasad, S. G. Advani, Design
and characterization of an electronically controlled variable flow
rate ejector for fuel cell applications, International Journal of Hydrogen
Energy 37 (5) (2012) 4457 – 4466.
[57] W. M. Budzianowski, A review of potential innovations for production,
conditioning and utilization of biogas with multiple-criteria assessment,
RENEWABLE & SUSTAINABLE ENERGY REVIEWS 54 (2016) 1148–
1171. doi:10.1016/j.rser.2015.10.054.
[58] W. M. Budzianowski, K. J. Budzianowska, D. S. Budzianowska, Analysis
of solutions alleviating CO2 emissions intensity of biogas technology,
INTERNATIONAL JOURNAL OF GLOBAL WARMING 9 (4)
(2016) 507–528.
[59] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat,
A. Arpornwichanop, Neural network hybrid model of a
direct internal reforming solid oxide fuel cell, International Journal of
Hydrogen Energy 37 (3) (2012) 2498–2508.
[60] S. H. Chan, J. P. Stempien, O. L. Ding, P.-C. Su, H. K. Ho,
Fuel cell and hydrogen technologies research, development and
demonstration activities in Singapore - An update, INTERNATIONAL
JOURNAL OF HYDROGEN ENERGY 41 (32) (2016) 13869–13878.
doi:10.1016/j.ijhydene.2016.05.192.
[61] A. Chmielewski, R. Guminski, J. Maczak, Selected properties of the
adiabatic model of the Stirling engine combined with the model of
the piston-crankshaft system, in: 2016 21ST INTERNATIONAL CONFERENCE
ON METHODS AND MODELS IN AUTOMATION AND
ROBOTICS (MMAR), 2016, pp. 543–548, 21st International Conference
on Methods and Models in Automation and Robotics (MMAR),
Miedzyzdroje, POLAND, AUG 29-SEP 01, 2016.
[62] A. Chmielewski, R. Guminski, J. Maczak, Dynamic model of a freepiston
Stirling engine with four degrees of freedom combined with the
thermodynamic submodel, in: 2016 21ST INTERNATIONAL CONFERENCE
ON METHODS AND MODELS IN AUTOMATION AND
ROBOTICS (MMAR), 2016, pp. 583–588, 21st International Conference
on Methods and Models in Automation and Robotics (MMAR),
Miedzyzdroje, POLAND, AUG 29-SEP 01, 2016.
[63] A. Chmielewski, R. Guminski, J. Maczak, P. Szulim, Model-based re-
search on a micro cogeneration system with Stirling engine, JOURNAL
OF POWER TECHNOLOGIES 96 (4) (2016) 295–305.
[64] C. Churiaque, M. R. Amaya-Vazquez, F. J. Botana, J. M. Sanchez-
Amaya, FEM Simulation and Experimental Validation of LBW Under
Conduction Regime of Ti6Al4V Alloy, JOURNAL OF MATERIALS ENGINEERING
AND PERFORMANCE 25 (8, SI) (2016) 3260–3269, International
Symposium on Metal-Matrix Composites as part of the European
Congress on Advanced Materials and Processes (EUROMAT),
Warsaw, POLAND, SEP 20-24, 2015. doi:10.1007/s11665-016-2214-
1.
[65] G. De Lorenzo, P. Fragiacomo, A methodology for improving the performance
of molten carbonate fuel cell/gas turbine hybrid systems, International
Journal of Energy Research 36 (1) (2012) 96–110.
[66] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture
with molten carbonate fuel cells: Experimental tests and fuel cell
performance assessment, International Journal of Greenhouse Gas
Control 9 (2012) 372–384.
[67] D. Grondin, J. Deseure, P. Ozil, J.-P. Chabriat, B. Grondin-Perez,
A. Brisse, Solid oxide electrolysis cell 3d simulation using artificial
neural network for cathodic process description, Chemical Engineering
Research and Design 91 (1) (2013) 134–140.
[68] E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration systems
based on lt-pemfc and ht-pemfc by energy balances, Applied
Energy 108 (2013) 82–91.
[69] K. Janusz-Szyma´nska, Economic efficiency of an igcc system integreted
with ccs installation [efektywno´s´c ekonomiczna układu gazowoparowego
zintegrowanego ze zgazowaniem we˛gla oraz z instalacjaa˛
CCS], Rynek Energii 102 (5) (2012) 24–30.
[70] H. Jeong, K. Park, J. Cho, Numerical analysis of variable polarity arc
weld pool, JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
30 (9) (2016) 4307–4313. doi:10.1007/s12206-016-0845-7.
[71] P. Krawczyk, L. Szablowski, K. Badyda, S. Karellas, E. Kakaras, Impact
of selected parameters on performance of the Adiabatic Liquid
Air Energy Storage system, JOURNAL OF POWER TECHNOLOGIES
96 (4) (2016) 238–244.
[72] J. Kupecki, K. Motylinski, M. Ferraro, F. Sergi, N. Zanon, Use of NaNiCl
battery for mitigation of SOFC stack cycling in base-load telecommunication
power system-a preliminary evaluation, JOURNAL OF POWER
TECHNOLOGIES 96 (1) (2016) 63–71.
[73] C.-G. Lee, D.-H. Kim, H.-C. Lim, Electrode reaction characteristics under
pressurized conditions in a molten carbonate fuel cell, Journal of
the Electrochemical Society 154 (4) (2007) B396–B404.
[74] X. Lv, X. Liu, C. Gu, Y. Weng, Determination of safe operation
zone for an intermediate-temperature solid oxide fuel cell
and gas turbine hybrid system, ENERGY 99 (2016) 91–102.
doi:10.1016/j.energy.2016.01.047.
[75] H. Marzooghi, M. Raoofat, M. Dehghani, G. Elahi, Dynamic modeling
of solid oxide fuel cell stack based on local linear model tree algorithm,
International Journal of Hydrogen Energy 37 (5) (2012) 4367–4376.
[76] J. Milewski, A mathematical model of sofc: A proposal, Fuel Cells
12 (5) (2012) 709–721.
[77] P. Pianko-Oprych, Z. Jaworski, Numerical modelling of the microtubular
solid oxide fuel cell stacks [przeglad metod modelowania
numerycznego mikrorurowych stał otlenkowych stosów ognhw paliwowych],
Przemysl Chemiczny 91 (9) (2012) 1813–1815.
[78] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement
of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as
an electronic blocking layer by pulsed laser deposition, International
Journal of Hydrogen Energy 38 (5) (2013) 2407–2412.
[79] D. Sánchez, B. Monje, R. Chacartegui, S. Campanari, Potential of
molten carbonate fuel cells to enhance the performance of chp plants
in sewage treatment facilities, International Journal of Hydrogen Energy
38 (1) (2013) 394–405.
[80] A. Sobolewski, . Bartela, A. Skorek-Osikowska, T. Iluk, Comparison of
the economic efficiency of chp plants integrated with gazela generator
[porównanie efektywno´sci ekonomicznej układów kogeneracyjnych z
generatorem gazu procesowego gazela], Rynek Energii 102 (5) (2012)
31–37.
[81] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application
of artificial neural networks (ann) for modeling of industrial hydrogen
plant, International Journal of Hydrogen Energy 38 (15) (2013) 6289–
6297.
Published
2019-04-17
How to Cite
KUPECKI, Jakub.
Sensitivity analysis of main parameters of pressurized SOFC hybrid system.
Journal of Power Technologies, [S.l.], v. 99, n. 2, p. 115–122, apr. 2019.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1112>. Date accessed: 03 dec. 2024.
Issue
Section
Fuel Cells and Hydrogen
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).