Electrically driven thermal annealing set-up dedicated to high quality factor optical resonator fabrication
Abstract
This paper reports on the development of an oven with a special purpose electronic board and specialist materials suchas basalt fiber and nichrome. It is designed for optical resonators which are temperature controlled during their annealingprocess to increase their quality factor for the purpose of photonics applications.References
[1] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, Ultra-highq
toroid microcavity on a chip, Nature 421 (2003) 925–928.
[2] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen,
L. T. Varghese, A. M. Weiner, Spectral line-by-line pulse shaping of onchip
microresonator frequency combs, Nature Photonics 5 (12) (2011)
770–776.
Figure 4: (a): Thermal annealing up to 600°C (Square: 5.4A – 28.8V –
Triangle: 5.5A – 29V). (b): Thermal annealing up to 100°C (Square: 1.5A –
8.6V – Rhombus: 2.07A – 11.8V – Triangle: 5.4A – 28.8V
[3] A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, Kilohertz
optical resonances in dielectric crystal cavities, Phys. Rev. A 70 (5)
(2004) 051904.
[4] W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel,
L. Maleki, Generation of near-infrared frequency combs from a
mgf2 whispering gallery mode resonator, Opt. Lett. 36 (12) (2011)
2290–2292.
[5] P. Salzenstein, H. Tavernier, N. N. T. Kim, L. Larger, E. Rubiola, Optical
mini-disk resonator integrated into a compact optoelectronic oscillator,
Acta Physica Polonica A 116 (4) (2009) 661–663.
[6] V. S. Ilchenko, A. A. Savchenkov, J. Byrd, A. B. Solomatine, A. B.
Matsko, D. Seidel, L. Maleki, Crystal quartz optical whispering-gallery
resonators, Opt. Lett. 33 (14) (2008) 1569–1571.
[7] A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti,
S. Pelli, S. Soria, G. Righini, Spherical whispering-gallery-mode microresonators,
Laser Photonics review 4 (3) (2010) 457–582.
[8] D. Risti´c, S. Berneschi, M. Camerini, D. Farnesi, S. Pelli, C. Trono,
A. Chiappinie, A. Chiasera, M. Ferrari, A. Lukowiak, Y. Dumeige,
P. Féron, G. C. Righini, S. Soria, G. Nunzi Conti, Photoluminescence
and lasing in whispering gallery mode glass microspherical resonators,
Journal of Luminescence 170 (3) (2016) 755–760.
[9] R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, Y. K. Chembo,
Experimental characterization of optoelectronic oscillators based on
optical mini-resonators, in: Proceedings of the Joint European Frequency
and Time Forum / International Frequency Control Symposium
(EFTF/IFCS), Prague, Czech Republic, 2013, pp. 37–39.
[10] P. Salzenstein, M. Mortier, H. Sérier-Brault, R. Henriet, A. Coillet, Y. K.
Chembo, A. Rasoloniaina, Y. Dumeige, P. Féron, Coupling of high quality
factor optical resonators, Physica Scripta T 157 (2013) 014024.
[11] G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, R. D., S. S., Whispering gallery mode microresonators: Fundamentals and
applications, Rivista del Nuovo Cimento 34 (7) (2011) 436–486.
[12] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, Y. N., M. L., Kilohertz
optical resonances in dielectric crystal cavities, J. Opt. Soc. Am. B
24 (12) (2007) 2988–2997.
[13] Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier,
P. Feron, Determination of coupling regime of high-q resonators and
optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 25 (12)
(2008) 2073–2080.
[14] J. P. Bentley, Temperature sensor characteristics and measurement
system design, Journal of Physics E: Scientific Instruments 17 (6)
(1984) 430.
[15] P. R. N. Childs, J. R. Greenwood, L. C. A., Review of temperature
measurement, Review of Scientific Instruments 71 (2000) 2959.
[16] J. Downey, S. Bombi´ nski, M. Nejman, J. K., Automatic multiple sensor
data acquisition system in a real-time production environment, Procedia
CIRP 33 (2015) 215–220.
[17] D. Han, Y. C. Jang, S. N. Oh, R. Chand, K. T. Lim, K. I. Kim, Y. S.
Kim, Mcu based real time temperature control system for universal
microfluidic pcr chip, Microsyst Technol 20 (6) (2014) 471–476.
[18] J. Sim, C. Park, M. Y. D., Characteristics of basalt fiber as a strengthening
material for concrete structures, Composites Part B: Engineering
36 (6) (2005) 504–512.
[19] R. Henriet, P. Salzenstein, D. Ristic, A. Coillet, M. Mortier, A. Rasoloniaina,
G. Saleh, K.and Cibiel, Y. Dumeige, M. Ferrari, Y. K. Chembo,
O. Llopis, P. Féron, High quality factor optical resonators, Physica
Scripta T 162 (2014) 014032.
[20] P. Salzenstein, V. B. Voloshinov, A. S. Trushin, Investigation in acoustooptic
laser stabilization for crystal resonator based optoelectronic oscillators,
Optical Engineering 52 (2) (2013) 024603.
[21] K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva,
P. Salzenstein, A. Coillet, Y. K. Chembo, Phase noise performance
comparison between optoelectronic oscillators based on optical delay
lines and whispering gallery mode resonators, Optics Express 22 (26)
(2014) 32158–32173.
toroid microcavity on a chip, Nature 421 (2003) 925–928.
[2] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen,
L. T. Varghese, A. M. Weiner, Spectral line-by-line pulse shaping of onchip
microresonator frequency combs, Nature Photonics 5 (12) (2011)
770–776.
Figure 4: (a): Thermal annealing up to 600°C (Square: 5.4A – 28.8V –
Triangle: 5.5A – 29V). (b): Thermal annealing up to 100°C (Square: 1.5A –
8.6V – Rhombus: 2.07A – 11.8V – Triangle: 5.4A – 28.8V
[3] A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, Kilohertz
optical resonances in dielectric crystal cavities, Phys. Rev. A 70 (5)
(2004) 051904.
[4] W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel,
L. Maleki, Generation of near-infrared frequency combs from a
mgf2 whispering gallery mode resonator, Opt. Lett. 36 (12) (2011)
2290–2292.
[5] P. Salzenstein, H. Tavernier, N. N. T. Kim, L. Larger, E. Rubiola, Optical
mini-disk resonator integrated into a compact optoelectronic oscillator,
Acta Physica Polonica A 116 (4) (2009) 661–663.
[6] V. S. Ilchenko, A. A. Savchenkov, J. Byrd, A. B. Solomatine, A. B.
Matsko, D. Seidel, L. Maleki, Crystal quartz optical whispering-gallery
resonators, Opt. Lett. 33 (14) (2008) 1569–1571.
[7] A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti,
S. Pelli, S. Soria, G. Righini, Spherical whispering-gallery-mode microresonators,
Laser Photonics review 4 (3) (2010) 457–582.
[8] D. Risti´c, S. Berneschi, M. Camerini, D. Farnesi, S. Pelli, C. Trono,
A. Chiappinie, A. Chiasera, M. Ferrari, A. Lukowiak, Y. Dumeige,
P. Féron, G. C. Righini, S. Soria, G. Nunzi Conti, Photoluminescence
and lasing in whispering gallery mode glass microspherical resonators,
Journal of Luminescence 170 (3) (2016) 755–760.
[9] R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, Y. K. Chembo,
Experimental characterization of optoelectronic oscillators based on
optical mini-resonators, in: Proceedings of the Joint European Frequency
and Time Forum / International Frequency Control Symposium
(EFTF/IFCS), Prague, Czech Republic, 2013, pp. 37–39.
[10] P. Salzenstein, M. Mortier, H. Sérier-Brault, R. Henriet, A. Coillet, Y. K.
Chembo, A. Rasoloniaina, Y. Dumeige, P. Féron, Coupling of high quality
factor optical resonators, Physica Scripta T 157 (2013) 014024.
[11] G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi Conti, R. D., S. S., Whispering gallery mode microresonators: Fundamentals and
applications, Rivista del Nuovo Cimento 34 (7) (2011) 436–486.
[12] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, Y. N., M. L., Kilohertz
optical resonances in dielectric crystal cavities, J. Opt. Soc. Am. B
24 (12) (2007) 2988–2997.
[13] Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier,
P. Feron, Determination of coupling regime of high-q resonators and
optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 25 (12)
(2008) 2073–2080.
[14] J. P. Bentley, Temperature sensor characteristics and measurement
system design, Journal of Physics E: Scientific Instruments 17 (6)
(1984) 430.
[15] P. R. N. Childs, J. R. Greenwood, L. C. A., Review of temperature
measurement, Review of Scientific Instruments 71 (2000) 2959.
[16] J. Downey, S. Bombi´ nski, M. Nejman, J. K., Automatic multiple sensor
data acquisition system in a real-time production environment, Procedia
CIRP 33 (2015) 215–220.
[17] D. Han, Y. C. Jang, S. N. Oh, R. Chand, K. T. Lim, K. I. Kim, Y. S.
Kim, Mcu based real time temperature control system for universal
microfluidic pcr chip, Microsyst Technol 20 (6) (2014) 471–476.
[18] J. Sim, C. Park, M. Y. D., Characteristics of basalt fiber as a strengthening
material for concrete structures, Composites Part B: Engineering
36 (6) (2005) 504–512.
[19] R. Henriet, P. Salzenstein, D. Ristic, A. Coillet, M. Mortier, A. Rasoloniaina,
G. Saleh, K.and Cibiel, Y. Dumeige, M. Ferrari, Y. K. Chembo,
O. Llopis, P. Féron, High quality factor optical resonators, Physica
Scripta T 162 (2014) 014032.
[20] P. Salzenstein, V. B. Voloshinov, A. S. Trushin, Investigation in acoustooptic
laser stabilization for crystal resonator based optoelectronic oscillators,
Optical Engineering 52 (2) (2013) 024603.
[21] K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva,
P. Salzenstein, A. Coillet, Y. K. Chembo, Phase noise performance
comparison between optoelectronic oscillators based on optical delay
lines and whispering gallery mode resonators, Optics Express 22 (26)
(2014) 32158–32173.
Published
2018-07-22
How to Cite
SALZENSTEIN, Patrice; DIALLO, Souleymane; ZARUBIN, Mikhail.
Electrically driven thermal annealing set-up dedicated to high quality factor optical resonator fabrication.
Journal of Power Technologies, [S.l.], v. 98, n. 2, p. 198–201, july 2018.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1061>. Date accessed: 03 dec. 2024.
Issue
Section
Electrical Engineering
Keywords
optical resonator, Q-factor, annealing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).