A Survey on High-Frequency Inverter and Their Power Control Techniques for Induction Heating Applications

  • Anand Kumar Dr. Niladri Das Mail Affiliation DEPARTMENT OF MANAGEMENT STUDIES INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD (Under MHRD, Govt. of India), DHANBAD - 826004, JHARKHAND (INDIA)
  • Moumita Sadhu Govt Engineering College, Chaibasa, Jharkhand,India
  • Niladri Das DEPARTMENT OF MANAGEMENT STUDIES INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD (Under MHRD, Govt. of India), DHANBAD - 826004, JHARKHAND (INDIA)
  • Pradip Kumar Sadhu Professor & Head DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD (Under MHRD, Govt. of India), DHANBAD - 826004, JHARKHAND (INDIA)
  • Debabrata Roy Techno India Batanagar A unit of Techno India™ Group B7-360/New, Ward No.30, Putkhali, Maheshtala Kolkata - 700141, West Bengal, India
  • Ankur Ganguly PRINCIPAL TECHNO INDIA - BATANAGAR TECHNO INDIA GROUP

Abstract

Intensive use of induction heating (IH) technology can be seen in many areas such as industrial, domestic and medicalapplications. The evolution of high-frequency switches has facilitated the design of high-frequency inverters, the key elementof induction heating technology. Controling output power in a high-frequency inverter for induction heating application iscomplex. However, the importance of IH technology is not widespread. Induction heating technology requires accurate outputpower and current control with appropriate dynamics. Several power control techniques have been discussed inrelation todesigning high-frequency inverters for IH applications. This paper makes a comprehensive review of the various power controltechniques regarding high-frequency inverters for modern IH applications (domestic & industrial).

Author Biographies

Moumita Sadhu, Govt Engineering College, Chaibasa, Jharkhand,India
Dept. of Humanities and Basic Science and Assistant Professor
Niladri Das, DEPARTMENT OF MANAGEMENT STUDIES INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD (Under MHRD, Govt. of India), DHANBAD - 826004, JHARKHAND (INDIA)
DEPARTMENT OF MANAGEMENT STUDIES and ASSISTANT PROFESSOR
Pradip Kumar Sadhu, Professor & Head DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD (Under MHRD, Govt. of India), DHANBAD - 826004, JHARKHAND (INDIA)
Professor & HeadDEPARTMENT OF ELECTRICAL ENGINEERING
Debabrata Roy, Techno India Batanagar A unit of Techno India™ Group B7-360/New, Ward No.30, Putkhali, Maheshtala Kolkata - 700141, West Bengal, India
Electrical Engineering and Assistant Professor
Ankur Ganguly, PRINCIPAL TECHNO INDIA - BATANAGAR TECHNO INDIA GROUP
PRINCIPAL TECHNO INDIA - BATANAGAR

References

[1] A. Arteconi, C. Brandoni, F. Polonara, Distributed generation and trigeneration:
Energy saving opportunities in italian supermarket sector,
Applied Thermal Engineering 29 (8) (2009) 1735–1743.
[2] P. R. Stauffer, T. C. Cetas, R. C. Jones, Magnetic induction heating
of ferromagnetic implants for inducing localized hyperthermia in
deep-seated tumors, IEEE Transactions on Biomedical Engineering (2)
(1984) 235–251.
[3] W. Moreland, The induction range: Its performance and its development
problems, IEEE Transactions on Industry Applications (1) (1973)
81–85.
[4] A. Chakraborty, D. Roy, P. K. Sadhu, A. Ganguly, A. Banerjee, (0549)
an interference of high frequency series resonant inverter in domestic
induction heater estimation in emission control using fem, Journal of
Power Technologies.
[5] D. Roy, A. Naskar, P. K. Sadhu, A mathematical analysis of two dimensional
steady state heat conduction in the coil of an induction heater
using finite element method, J. Power Technol.
[6] A. MÜHLBAUER, History of induction heating and melting. essen:
Vulkan, c2008, x, 202 p, Tech. rep., ISBN 38-027-2946-3.
[7] O. Lucía, P. Maussion, E. J. Dede, J. M. Burdío, Induction heating
technology and its applications: past developments, current technology,
and future challenges, IEEE Transactions on Industrial Electronics
61 (5) (2014) 2509–2520.
[8] F. P. Dawson, P. Jain, A comparison of load commutated inverter systems
for induction heating and melting applications, IEEE Transactions
on Power Electronics 6 (3) (1991) 430–441.
[9] H.W. Koertzen, J. D. VanWyk, J. A. Ferreira, Design of the half-bridge,
series resonant converter for induction cooking, in: Power Electronics
Specialists Conference, 1995. PESC’95 Record., 26th Annual IEEE,
Vol. 2, IEEE, 1995, pp. 729–735.
[10] M. Kamli, S. Yamamoto, M. Abe, A 50-150 khz half-bridge inverter for
induction heating applications, IEEE Transactions on Industrial Electronics
43 (1) (1996) 163–172.
[11] Y.-S. Kwon, S.-B. Yoo, D.-S. Hyun, Half-bridge series resonant inverter
for induction heating applications with load-adaptive pfm control strategy,
in: Applied Power Electronics Conference and Exposition, 1999.
APEC’99. Fourteenth Annual, Vol. 1, IEEE, 1999, pp. 575–581.
[12] H. Koertzen, J. Ferreria, J. Van Wyk, A comparative study of single
switch induction heating converters using novel component effectivity
concepts, in: Power Electronics Specialists Conference, 1992.
PESC’92 Record., 23rd Annual IEEE, IEEE, 1992, pp. 298–305.
[13] J. M. Burdio, L. A. Barragan, F. Monterde, D. Navarro, J. Acero, Asymmetrical
voltage-cancellation control for full-bridge series resonant inverters,
IEEE Transactions on Power Electronics 19 (2) (2004) 461–
469.
[14] J. Davies, P. Simpson, Induction heating handbook, McGraw-Hill Companies,
1979.
[15] H. Sarnago, Ó. Lucía, M. Pérez-Tarragona, J. M. Burdío, Dual-output
boost resonant full-bridge topology and its modulation strategies for
high-performance induction heating applications, IEEE Transactions
on Industrial Electronics 63 (6) (2016) 3554–3561.
[16] H. Sarnago, O. Lucia, A. Mediano, J. M. Burdio, Direct ac–ac resonant
boost converter for efficient domestic induction heating applications,
IEEE Transactions on Power Electronics 29 (3) (2014) 1128–1139.
[17] P. P. Roy, S. Doradla, S. Deb, Analysis of the series resonant converter
using a frequency domain model, in: Power Electronics Specialists
Conference, 1991. PESC’91 Record., 22nd Annual IEEE, IEEE, 1991,
pp. 482–489.
[18] A. Bhat, Fixed frequency pwm series-parallel resonant converter,
in: Industry Applications Society Annual Meeting, 1989., Conference
Record of the 1989 IEEE, IEEE, 1989, pp. 1115–1121.
[19] L. Grajales, J. Sabate, K. Wang, W. Tabisz, F. Lee, Design of a 10
kw, 500 khz phase-shift controlled series-resonant inverter for induction
heating, in: Industry Applications Society Annual Meeting, 1993.,
Conference Record of the 1993 IEEE, IEEE, 1993, pp. 843–849.
[20] J. Milewski, W. Bujalski, M. Wolowicz, K. Futyma, J. Kucowski, Offdesign
operation of an 900 mw-class power plant with utilization of low
temperature heat of flue gases, Journal of Power Technologies 95 (3)
(2015) 221.
[21] M. Wolowicz, J. Milewski, K. Badyda, Feedwater repowering of 800
mw supercritical steam power plant, Journal of Power Technologies
92 (2) (2012) 127.
[22] M. Hediehloo, M. Akhbari, New approach in design of planar coil of
induction cooker based on skin and proximity effects analysis, in: Industrial
Technology, 2009. ICIT 2009. IEEE International Conference
on, IEEE, 2009, pp. 1–6.
[23] ’Induction Heating System Topology Review’,
http://www.induksiyonx.com/FileUpload/bs736485/File/an-9012.pdf.
[24] O. Fernandez, J. Delgado, F. Martinez, J. Correa, M. Heras, Design
and implementation of a 120a resonant inverter for induction furnace,
in: Power, Electronics and Computing (ROPEC), 2013 IEEE International
Autumn Meeting on, IEEE, 2013, pp. 1–6.
[25] A. Shenkman, B. Axelrod, Y. Berkovich, Single-switch ac–ac converter
with high power factor and soft commutation for induction heating applications,
IEE Proceedings-Electric Power Applications 148 (6) (2001)
469–474.
[26] A. Shenkman, B. Axelrod, Y. Berkovich, Improved modification of the
single-switch ac-ac converter for induction heating applications, IEE
Proceedings-Electric Power Applications 151 (1) (2004) 1–4.
[27] N. Yongyuth, P. Viriya, K. Matsuse, Analysis of a full-bridge inverter
for induction heating using asymmetrical phase-shift control under zvs
and non-zvs operation, in: Power Electronics and Drive Systems,
2007. PEDS’07. 7th International Conference on, IEEE, 2007, pp.
476–482.
[28] C.-M.Wang, H.-J. Chiu, D.-R. Chen, Novel zero-current-switching (zcs)
pwm converters, IEE Proceedings-Electric Power Applications 152 (2)
(2005) 407–415.
[29] N.-J. Park, D.-Y. Lee, D.-S. Hyun, A power-control scheme with constant
switching frequency in class-d inverter for induction-heating jar
application, IEEE Transactions on Industrial Electronics 54 (3) (2007)
1252–1260.
[30] F. Forest, S. Faucher, J.-Y. Gaspard, D. Montloup, J.-J. Huselstein,
C. Joubert, Frequency-synchronized resonant converters for the supply
of multiwinding coils in induction cooking appliances, IEEE Transactions
on Industrial Electronics 54 (1) (2007) 441–452.
[31] P. Savary, M. Nakaoka, T. Maruhashi, A high-frequency resonant inverter
using current-vector control scheme and its performance evaluations,
IEEE Transactions on Industrial Electronics (2) (1987) 247–
256.
[32] A. L. Shenkman, B. Axelrod, V. Chudnovsky, A new simplified model of
the dynamics of the current-fed parallel resonant inverter, IEEE Transactions
on Industrial Electronics 47 (2) (2000) 282–286.
[33] A. Shenkman, B. Axelrod, V. Chudnovsky, Assuring continuous input
current using a smoothing reactor in a thyristor frequency converter for
induction metal melting and heating applications, IEEE Transactions
on Industrial Electronics 48 (6) (2001) 1290–1292.
[34] R. L. Steigerwald, A comparison of half-bridge resonant converter
topologies, IEEE transactions on Power Electronics 3 (2) (1988) 174–
182.
[35] V. Esteve, E. Sanchis-Kilders, J. Jordán, E. J. Dede, C. Cases,
E. Maset, J. B. Ejea, A. Ferreres, Improving the efficiency of igbt seriesresonant
inverters using pulse density modulation, IEEE transactions
on industrial electronics 58 (3) (2011) 979–987.
[36] O. Lucia, J. M. Burdio, I. Millán, J. Acero, L. A. Barragán, Efficiencyoriented
design of zvs half-bridge series resonant inverter with variable
frequency duty cycle control, IEEE Transactions on Power Electronics
25 (7) (2010) 1671–1674.
[37] J. Espi, E. Dede, E. Navarro, E. Sanchis, A. Ferreres, Features and
design of the voltage-fed l-lc resonant inverter for induction heating,
in: Power Electronics Specialists Conference, 1999. PESC 99. 30th
Annual IEEE, Vol. 2, IEEE, 1999, pp. 1126–1131.
[38] J. Espi, E. Dede, Design considerations for three element l-lc resonant
inverters for induction heating, International journal of electronics
86 (10) (1999) 1205–1216.
[39] J. Espi, A. Navarro, J. Maicas, J. Ejea, S. Casans, Control circuit design
of the l-lc resonant inverter for induction heating, in: Power Electronics
Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual,
Vol. 3, IEEE, 2000, pp. 1430–1435.
[40] J. Espi, E. Dede, A. Ferreres, R. Garcia, Steady-state frequency analysis
of the" llc" resonant inverter for induction heating, in: Power Electronics
Congress, 1996. Technical Proceedings. CIEP’96., v IEEE International,
IEEE, 1996, pp. 22–28.
[41] J. M. Espi-Huerta, E. J. D. G. Santamaria, R. G. Gil, J. Castello-
Moreno, Design of the l-lc resonant inverter for induction heating based
on its equivalent sri, IEEE Transactions on Industrial Electronics 54 (6)
(2007) 3178–3187.
[42] L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy
storage in the car, Journal of Power Technologies 91 (1) (2011) 23.
[43] J. Milewski, K. Badyda, L. Szablowski, Compressed air energy storage
systems, Journal of Power Technologies 96 (4) (2016) 245.
[44] O. Lucia, J. M. Burdio, L. A. Barragan, J. Acero, I. Millán, Seriesresonant
multiinverter for multiple induction heaters, IEEE Transactions
on Power Electronics 25 (11) (2010) 2860–2868.
[45] J. M. Burdio, F. Monterde, J. R. Garcia, L. A. Barragan, A. Martinez, A
two-output series-resonant inverter for induction-heating cooking appliances,
IEEE Transactions on Power Electronics 20 (4) (2005) 815–
822.
[46] M. Pérez-Tarragona, H. Sarnago, Ó. Lucia, J. M. Burdío, Series resonant
multi-inverter prototype for domestic induction heating, in: Industrial
Electronics Society, IECON 2015-41st Annual Conference of the
IEEE, IEEE, 2015, pp. 005444–005449.
[47] Y.-C. Jung, Dual half bridge series resonant inverter for induction heating
appliance with two loads, Electronics letters 35 (16) (1999) 1345–
1346.
[48] F. Forest, E. Laboure, F. Costa, J. Y. Gaspard, Principle of a multiload/
single converter system for low power induction heating, IEEE
Transactions on Power Electronics 15 (2) (2000) 223–230.
[49] N. Nguyen-Quang, D. Stone, C. Bingham, M. Foster, Single phase matrix
converter for radio frequency induction heating, in: Power Electronics,
Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006.
International Symposium on, IEEE, 2006, pp. 614–618.
[50] H. Sugimura, S.-P. Mun, S.-K. Kwon, T. Mishima, M. Nakaoka, Highfrequency
resonant matrix converter using one-chip reverse blocking
igbt-based bidirectional switches for induction heating, in: Power Electronics
Specialists Conference, 2008. PESC 2008. IEEE, IEEE, 2008,
pp. 3960–3966.
[51] H. Sarnago, A. Mediano, O. Lucia, High efficiency ac–ac power electronic
converter applied to domestic induction heating, IEEE Transactions
on Power Electronics 27 (8) (2012) 3676–3684.
[52] J. Rodriguez, J.-S. Lai, F. Z. Peng, Multilevel inverters: a survey of
topologies, controls, and applications, IEEE Transactions on industrial
electronics 49 (4) (2002) 724–738.
[53] J.-S. Lai, F. Z. Peng, Multilevel converters-a new breed of power converters,
IEEE Transactions on industry applications 32 (3) (1996) 509–
517.
[54] G. P. Adam, S. J. Finney, A. M. Massoud, B. W. Williams, Capacitor
balance issues of the diode-clamped multilevel inverter operated in
a quasi two-state mode, IEEE Transactions on Industrial Electronics
55 (8) (2008) 3088–3099.
[55] L. Qingfeng, W. Huamin, L. Zhaoxia, Discuss on the application of multilevel
inverter in high frequency induction heating power supply, in:
TENCON 2006. 2006 IEEE Region 10 Conference, IEEE, 2006, pp.
1–4.
[56] J. I. Rodriguez, S. B. Leeb, A multilevel inverter topology for inductively
coupled power transfer, IEEE Transactions on Power Electronics 21 (6)
(2006) 1607–1617.
[57] B. Nagarajan, R. R. Sathi, Phase locked loop based pulse density
modulation scheme for the power control of induction heating applications,
Journal of Power Electronics 15 (1) (2015) 65–77.
[58] O. Lucia, C. Carretero, D. Palacios, D. Valeau, J. Burdío, Configurable
snubber network for efficiency optimisation of resonant converters applied
to multi-load induction heating, Electronics letters 47 (17) (2011)
989–991.
[59] N. A. Ahmed, M. Nakaoka, Boost-half-bridge edge resonant soft
switching pwm high-frequency inverter for consumer induction heating
appliances, IEE Proceedings-Electric Power Applications 153 (6)
(2006) 932–938.
[60] H. Sarnago, O. Lucia, A. Mediano, J. M. Burdío, Class-d/de dual-modeoperation
resonant converter for improved-efficiency domestic induction
heating system, IEEE Transactions on Power Electronics 28 (3)
(2013) 1274–1285.
[61] H. P. Ngoc, H. Fujita, K. Ozaki, N. Uchida, Phase angle control of
high-frequency resonant currents in a multiple inverter system for
zone-control induction heating, IEEE Transactions on power electronics
26 (11) (2011) 3357–3366.
[62] C. Carretero, O. Luc, J. Acero, J. Burd, et al., Phase-shift control of
dual half-bridge inverter feeding coupled loads for induction heating
purposes, Electronics Letters 47 (11) (2011) 670–671.
[63] M. K. Kazimierczuk, M. K. Jutty, Fixed-frequency phase-controlled fullbridge
resonant converter with a series load, IEEE transactions on
power electronics 10 (1) (1995) 9–18.
[64] H. Kifune, Y. Hatanaka, M. Nakaoka, Cost effective phase shifted pulse
modulation soft switching high frequency inverter for induction heating
applications, IEE Proceedings-Electric Power Applications 151 (1)
(2004) 19–25.
[65] B.-Y. Chen, Y.-S. Lai, Switching control technique of phase-shiftcontrolled
full-bridge converter to improve efficiency under light-load
and standby conditions without additional auxiliary components, IEEE
transactions on power electronics 25 (4) (2010) 1001–1012.
[66] P. Imbertson, N. Mohan, Asymmetrical duty cycle permits zero switching
loss in pwm circuits with no conduction loss penalty, IEEE transactions
on industry applications 29 (1) (1993) 121–125.
[67] P. Imbertson, N. Mohan, New pwm converter circuits combining zero
switching loss with low conduction loss, in: Telecommunications Energy
Conference, 1990. INTELEC’90., 12th International, IEEE, 1990,
pp. 179–185.
[68] S. Yachiangkam, A. Sangswang, S. Naetiladdanon, C. Koompai,
S. Chudjuarjeen, Resonant inverter with a variable-frequency asymmetrical
voltage-cancellation control for low q-factor loads in induction
cooking, in: Power Electronics and Applications (EPE 2011), Proceedings
of the 2011-14th European Conference on, IEEE, 2011, pp. 1–10.
[69] S. Hosseini, A. Y. Goharrizi, E. Karimi, A multi-output series resonant
inverter with asymmetrical voltage-cancellation control for inductionheating
cooking appliances, in: Power Electronics and Motion Control
Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Vol. 3,
IEEE, 2006, pp. 1–6.
[70] J. Jittakort, S. Chudjuarjeen, A. Sangswang, S. Naetiladdanon,
C. Koompai, A dual output series resonant inverter with improved
asymmetrical voltage-cancellation control for induction cooking appliance,
in: IECON 2011-37th Annual Conference on IEEE Industrial
Electronics Society, IEEE, 2011, pp. 2520–2525.
[71] L. A. Barragán, J. M. Burdío, J. I. Artigas, D. Navarro, J. Acero,
D. Puyal, Efficiency optimization in zvs series resonant inverters with
asymmetrical voltage-cancellation control, IEEE transactions on power electronics 20 (5) (2005) 1036–1044.
[72] N. A. Ahmed, High-frequency soft-switching ac conversion circuit with
dual-mode pwm/pdm control strategy for high-power ih applications,
IEEE transactions on industrial electronics 58 (4) (2011) 1440–1448.
[73] H. Fujita, H. Akagi, Control and performance of a pulse-densitymodulated
series-resonant inverter for corona discharge processes,
IEEE Transactions on Industry Applications 35 (3) (1999) 621–627.
[74] O. Lucia, J. M. Burdio, I. Millan, J. Acero, D. Puyal, Load-adaptive control
algorithm of half-bridge series resonant inverter for domestic induction
heating, IEEE Transactions on Industrial Electronics 56 (8) (2009)
3106–3116.
[75] S. Shah, A. K. Upadhyay, Analysis and design of a half-bridge seriesparallel
resonant converter operating in discontinuous conduction
mode, in: Applied Power Electronics Conference and Exposition, 1990.
APEC’90, Conference Proceedings 1990., Fifth Annual, IEEE, 1990,
pp. 165–174.
[76] V. Belaguli, A. K. Bhat, Series-parallel resonant converter operating in
discontinuous current mode. analysis, design, simulation, and experimental
results, IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 47 (4) (2000) 433–442.
[77] I. Millan, D. Puyal, J. Burdio, C. Bemal, J. Acero, Improved performance
of half-bridge series resonant inverter for induction heating with discontinuous
mode control, in: Applied Power Electronics Conference,
APEC 2007-Twenty Second Annual IEEE, IEEE, 2007, pp. 1293–1298.
[78] J. Tian, G. Berger, T. Reimann, M. Scherf, J. Petzoldt, A half-bridge series
resonant inverter for induction cookers using a novel fpga-based
control strategy, in: Power Electronics and Applications, 2005 European
Conference on, IEEE, 2005, pp. 1–9.
[79] H. N. Pham, H. Fujita, K. Ozaki, N. Uchida, Dynamic analysis and control
for resonant currents in a zone-control induction heating system,
IEEE Transactions on Power Electronics 28 (3) (2013) 1297–1307.
[80] J. Egalon, S. Caux, P. Maussion, M. Souley, O. Pateau, Multiphase system
for metal disc induction heating: Modeling and rms current control,
IEEE Transactions on industry applications 48 (5) (2012) 1692–1699.
[81] M. Cano, A. Barrera, J. Estrada, A. Hernandez, T. Cordova, An induction
heater device for studies of magnetic hyperthermia and specific
absorption ratio measurements, Review of Scientific Instruments
82 (11) (2011) 114904.
[82] D. Paesa, C. Franco, S. Llorente, G. Lopez-Nicolas, C. Sagues, Adaptive
simmering control for domestic induction cookers, IEEE Transactions
on Industry Applications 47 (5) (2011) 2257–2267.
[83] N. K. Long, S. Caux, X. Kestelyn, O. Pateau, P. Maussion, Resonant
control of multi-phase induction heating systems, in: IECON 2012-38th
Annual Conference on IEEE Industrial Electronics Society, IEEE, 2012,
pp. 3293–3298.
[84] A. Dominguez, L. A. Barragan, A. Otin, D. Navarro, D. Puyal, Inversebased
power control in domestic induction-heating applications, IEEE
transactions on industrial electronics 61 (5) (2014) 2612–2621.
[85] J. I. Artigas, I. Urriza, J. Acero, L. A. Barragan, D. Navarro, J. M. Burdio,
Power measurement by output-current integration in series resonant
inverters, IEEE Transactions on Industrial Electronics 56 (2) (2009)
559–567.
[86] D. Navarro, Ó. Lucı, L. A. Barragán, I. Urriza, Ó. Jiménez, et al.,
High-level synthesis for accelerating the fpga implementation of computationally
demanding control algorithms for power converters, IEEE
Transactions on Industrial Informatics 9 (3) (2013) 1371–1379.
[87] O. Lucia, L. A. Barragan, J. M. Burdio, O. Jimenez, D. Navarro, I. Urriza,
A versatile power electronics test-bench architecture applied to
domestic induction heating, IEEE Transactions on Industrial Electronics
58 (3) (2011) 998–1007.
[88] D. Navarro, Ó. Lucía, L. A. Barragan, J. I. Artigas, I. Urriza, O. Jimenez,
Synchronous fpga-based high-resolution implementations of digital
pulse-width modulators, IEEE transactions on power electronics 27 (5)
(2012) 2515–2525.
[89] O. Jimenez, O. Lucia, I. Urriza, L. A. Barragan, P. Mattavelli, D. Boroyevich,
An fpga-based gain-scheduled controller for resonant converters
applied to induction cooktops, IEEE Transactions on Power Electronics
29 (4) (2014) 2143–2152.
Published
2017-11-01
How to Cite
KUMAR, Anand et al. A Survey on High-Frequency Inverter and Their Power Control Techniques for Induction Heating Applications. Journal of Power Technologies, [S.l.], v. 97, n. 3, p. 201--213, nov. 2017. ISSN 2083-4195. Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1021>. Date accessed: 28 sep. 2021.
Section
Electrical Engineering

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.