Cheap nano-clay additive as a lubricating enhancer

Janusz Rebis, Jaroslaw Frydrych, Jakub Skibinski, Krzysztof Rozniatowski

Abstract


Cheap nano-clay (montmorillonite) was taken into consideration in this study as an additive to mineral oil to improve its lubricating
properties. Mineral oils form the basis of speciality lubricants for food processing technology due to their biodegradability.
In contrast to synthetic oils they are also less harmful. Literature indicates that nano-particles additives have a huge impact
on lubricating properties. In this work wear scare diameter (WSD), friction coefficient and film thickness were studied.
High frequency reciprocating rig (HFRR) was used to measure the said lubricating properties of prepared mixtures. Authors
performed roughness measurements on sample plates after HFRR tests to study the relationship between WSD and Ra.

Keywords


Nano-particles; lubricating properties; HFRR; mineral oil

Full Text:

PDF

References


V. N. Bakunin, A. Y. Suslov, G. N. Kuz’mina, L. M. Vedeneeva, O. P.

Parenago, C. A. Migdal, P. E. Stott, Surface-capped molybdenum sulphide

nanoparticles — a novel type of lubricant additive, Lubrication

Science 16 (3) (2004) 207–214. doi:10.1002/ls.3010160302.

L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS 2 nanoparticles:

Superior lubricants for harsh conditions, Advanced Materials 15 (7-8)

(2003) 651–655. doi:10.1002/adma.200301640.

J. Padgurskas, R. Rukuiza, I. Prosycevas, R. Kreivaitis, Tribological

properties of lubricant additives of fe, cu and co

nanoparticles, Tribology International 60 (2013) 224–232.

doi:10.1016/j.triboint.2012.10.024.

S. Chen, W. Liu, Oleic acid capped pbs nanoparticles:

Synthesis, characterization and tribological properties, Materials

Chemistry and Physics 98 (1) (2006) 183–189.

doi:10.1016/j.matchemphys.2005.09.043.

W. Zhang, S. Chen, W. Liu, L. Yu, Friction and wear behaviour

of sialon (ca,mg)-sialon with lubrication by coated pbs nanoparticles

as oil additives, Lubrication Science 16 (1) (2003) 47–56.

doi:10.1002/ls.3010160104.

S. Aralihalli, S. K. Biswas, Grafting of dispersants on MoS 2 nanoparticles

in base oil lubrication of steel, Tribology Letters 49 (1) (2013)

–76. doi:10.1007/s11249-012-0042-5.

W. Liu, S. Chen, An investigation of the tribological behaviour of

surface-modified zns nanoparticles in liquid paraffin, Wear 238 (2)

(2000) 120–124. doi:10.1016/S0043-1648(99)00344-0.

L. Wang, Y. Gao, Z. Li, A. Zhou, P. Li, Preparation and tribological

properties of surface-modified zns nanoparticles, Lubrication Science

(4) (2015) 241–250, lS-14-0003-RA-LS.R1. doi:10.1002/ls.1275.

Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung, Tribological

behavior of copper nanoparticles as additives in oil, Current

Applied Physics 9 (2, Supplement) (2009) e124 – e127, nano Korea

Symposium. doi:10.1016/j.cap.2008.12.050.

S. J. Asadauskas, R. Kreivaitis, G. Bikulˇcius, A. Griguceviˇciene,

J. Padgurskas, Tribological effects of cu, fe and zn nano-particles,

suspended in mineral and bio-based oils, Lubrication Science 28 (3)

(2016) 157–176. doi:10.1002/ls.1307.

G. Liu, X. Li, N. Lu, R. Fan, Enhancing aw/ep property of lubricant oil

by adding nano al/sn particles, Tribology Letters 18 (1) (2005) 85–90.

doi:10.1007/s11249-004-1760-0.

H. Y. Chu, W. C. Hsu, J. F. Lin, Scuffing mechanism during oillubricated

block-on-ring test with diamond nanoparticles as oil additive,

Wear 268 (11-12) (2010) 1423–1433. doi:10.1016/j.wear.2010.02.016.

H. Chu, W. Hsu, J. c. Lin, The anti-scuffing performance of diamond

nano-particles as an oil additive, Wear 268 (7-8) (2010) 960–967, cited

By 29. doi:10.1016/j.wear.2009.12.023.

K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance

evaluation of nano-lubricants of fullerene nanoparticles in refrigeration

mineral oil, Current Applied Physics 9 (2, Supplement) (2009) e128 –

e131, nano Korea 2008 Symposium. doi:10.1016/j.cap.2008.12.054.

H. Huang, J. Tu, L. Gan, C. Li, An investigation on tribological properties

of graphite nanosheets as oil additive, Wear 261 (2) (2006) 140–

doi:10.1016/j.wear.2005.09.010.

T. Jun, X. Qunji, A graphite intercalation compound additive in oil, Lubrication

Science 8 (4) (1996) 353–358. doi:10.1002/ls.3010080403.

D.-L. Cursaru, C. Andronescu, C. Pirvu, R. Ripeanu, The efficiency

of co-based single-wall carbon nanotubes (SWnts) as an

aw/ep additive for mineral base oils, Wear 290-291 (2012) 133–139.

doi:10.1016/j.wear.2012.04.019.

C.-x. Gu, G.-j. Zhu, L. Li, X.-y. Tian, G.-y. Zhu, Tribological effects of oxide

based nanoparticles in lubricating oils, Journal of Marine Science

and Application 8 (1) (2009) 71–76. doi:10.1007/s11804-009-8008-1.

A. H. Battez, R. Gonzalez, J. Viesca, J. Fernandez, J. D. Fernandez,

A. Machado, R. Chou, J. Riba, Cuo, ZrO2 and zno nanoparticles as

antiwear additive in oil lubricants, Wear 265 (3-4) (2008) 422–428.

doi:10.1016/j.wear.2007.11.013.

M.-J. Kao, C.-R. Lin, Evaluating the role of spherical titanium oxide

nanoparticles in reducing friction between two pieces of cast iron, Journal

of Alloys and Compounds 483 (1-2) (2009) 456–459, 14th International

Symposium on Metastable and Nano-Materials (ISMANAM-

. doi:10.1016/j.jallcom.2008.07.223.

C. Turta, S. Melnic, D. Prodius, F. Macaev, H. Stoeckli-Evans, P. Ruiz,

D. Muraviev, S. Pogrebnoi, Z. Ribkovskaia, V. Mereacre, Y. Lan,

A. K. Powell, Sunflower oil coating on the nanoparticles of iron(iii) oxides,

Inorganic Chemistry Communications 13 (12) (2010) 1402–1405.

doi:10.1016/j.inoche.2010.07.046.

Z. Hu, R. Lai, F. Lou, L. Wang, Z. Chen, G. Chen, J. Dong,

Preparation and tribological properties of nanometer magnesium borate

as lubricating oil additive, Wear 252 (5-6) (2002) 370–374.

doi:10.1016/S0043-1648(01)00862-6.

Q. Sunqing, D. Junxiu, C. Guoxu, Tribological properties of CeF3

nanoparticles as additives in lubricating oils, Wear 230 (1) (1999) 35–

doi:10.1016/S0043-1648(99)00084-8.

R. Liu, X. Wei, D. Tao, Y. Zhao, Study of preparation and tribological

properties of rare earth nanoparticles in lubricating oil, Tribology

International 43 (5-6) (2010) 1082–1086, special Issue on

Second International Conference on Advanced Tribology (iCAT2008).

doi:10.1016/j.triboint.2009.12.026.

Q. Sunqing, D. Junxiu, C. Guoxu, Wear and friction behaviour of

CaCO3 nanoparticles used as additives in lubricating oils, Lubrication

Science 12 (2) (2000) 205–212. doi:10.1002/ls.3010120207.

P. Ye, X. Jiang, S. Li, S. Li, Preparation of NiMoO2S 2 nanoparticle and

investigation of its tribological behavior as additive in lubricating oils,

Wear 253 (5-6) (2002) 572–575. doi:10.1016/S0043-1648(02)00042-

X.

E. F. Rico, I. Minondo, D. G. Cuervo, The effectiveness of ptfe nanoparticle

powder as an ep additive to mineral base oils, Wear 262 (11–12)

(2007) 1399–1406. doi:10.1016/j.wear.2007.01.022.

M. Fiedler, R. Sanchez, E. Kuhn, J. M. Franco, Influence of oil

polarity and material combination on the tribological response of

greases formulated with biodegradable oils and bentonite and highly

dispersed silica acid, Lubrication Science 25 (6) (2013) 397–412.

doi:10.1002/ls.1207.

W. Tuszy´ nski, W. Piekoszewski, Effect of the type and concentration of

lubricating additives on the antiwear and extreme pressure properties

and rolling fatigue life of a four-ball tribosystem, Lubrication Science

(4) (2006) 309–328. doi:10.1002/ls.25.

F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metallurgical

and Materials Transactions A 39 (12) (2008) 2804–2814.

doi:10.1007/s11661-008-9603-5.

Q.-Q. Liao, G.-D. Zhou, H.-H. Ge, L.-M. Qi, Characterisation

of surface film on iron samples treated with octadecylamine,

Corrosion Engineering, Science and Technology 42 (2)

(2007) 102–105. arXiv:http://dx.doi.org/10.1179/174327807X159880,

doi:10.1179/174327807X159880.

S. Mallakpour, M. Madani, Use of silane coupling agent for surface

modification of zinc oxide as inorganic filler and preparation

of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine

moieties, Bulletin of Materials Science 35 (3) (2012) 333–339.

doi:10.1007/s12034-012-0304-8.

B. Arkles, Silane coupling agents: Connecting across boundaries

(2014).

J. Skibinski, J. Rebis, T. Wejrzanowski, K. Rozniatowski, K. Pressard,

K. Kurzydlowski, Imaging resolution of afm with probes modified with

fib, Micron 66 (2014) 23–30. doi:10.1016/j.micron.2014.05.001.

T. Wejrzanowski, W. Spychalski, K. Ró˙zniatowski, K. Kurzydłowski, Image

based analysis of complex microstructures of engineering materials

(2008) 33–39.

T. Wejrzanowski, M. Lewandowska, K. Kurzydłowski, Stereology of

nanomaterials, Image Analysis and Stereology 29 (1) (2010) 1–12.doi:10.5566/ias.v29.p1-12.

D. Zhu, Effect of surface roughness on mixed ehd lubrication

characteristics, Tribology Transactions 46 (1) (2003)

–48. arXiv:http://dx.doi.org/10.1080/10402000308982598,

doi:10.1080/10402000308982598.

L. Lin, Assessment of effects of surface roughness and oil viscosity on

friction coefficient under lubricated rolling-sliding conditions, Komatsu

Technical Report 59 (166).

M. R. Lovell, M. A. Kabir, P. L. Menezes, C. F. Higgs, Influence of

boric acid additive size on green lubricant performance, Philosophical

Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences 368 (1929) (2010) 4851–4868.

arXiv:http://rsta.royalsocietypublishing.org/content/368/1929/4851.full.pdf,

doi:10.1098/rsta.2010.0183.

S. Achanta, D. Drees, J.-P. Celis, Investigation of friction on hard homogeneous

coatings during reciprocating tests at micro-newton normal

forces, Wear 263 (7–12) (2007) 1390–1396, 16th International Conference

on Wear of Materials. doi:10.1016/j.wear.2006.12.013.

M. Sulek, A. Kulczycki, A. Malysa, Assessment of lubricity of compositions

of fuel oil with biocomponents derived from rape-seed, Wear

(1–2) (2010) 104–108. doi:10.1016/j.wear.2009.07.004.


Refbacks

  • There are currently no refbacks.