Cheap nano-clay additive as a lubricating enhancer
Abstract
Cheap nano-clay (montmorillonite) was taken into consideration in this study as an additive to mineral oil to improve its lubricatingproperties. Mineral oils form the basis of speciality lubricants for food processing technology due to their biodegradability.In contrast to synthetic oils they are also less harmful. Literature indicates that nano-particles additives have a huge impacton lubricating properties. In this work wear scare diameter (WSD), friction coefficient and film thickness were studied.High frequency reciprocating rig (HFRR) was used to measure the said lubricating properties of prepared mixtures. Authorsperformed roughness measurements on sample plates after HFRR tests to study the relationship between WSD and Ra.References
[1] V. N. Bakunin, A. Y. Suslov, G. N. Kuz’mina, L. M. Vedeneeva, O. P.
Parenago, C. A. Migdal, P. E. Stott, Surface-capped molybdenum sulphide
nanoparticles — a novel type of lubricant additive, Lubrication
Science 16 (3) (2004) 207–214. doi:10.1002/ls.3010160302.
[2] L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS 2 nanoparticles:
Superior lubricants for harsh conditions, Advanced Materials 15 (7-8)
(2003) 651–655. doi:10.1002/adma.200301640.
[3] J. Padgurskas, R. Rukuiza, I. Prosycevas, R. Kreivaitis, Tribological
properties of lubricant additives of fe, cu and co
nanoparticles, Tribology International 60 (2013) 224–232.
doi:10.1016/j.triboint.2012.10.024.
[4] S. Chen, W. Liu, Oleic acid capped pbs nanoparticles:
Synthesis, characterization and tribological properties, Materials
Chemistry and Physics 98 (1) (2006) 183–189.
doi:10.1016/j.matchemphys.2005.09.043.
[5] W. Zhang, S. Chen, W. Liu, L. Yu, Friction and wear behaviour
of sialon (ca,mg)-sialon with lubrication by coated pbs nanoparticles
as oil additives, Lubrication Science 16 (1) (2003) 47–56.
doi:10.1002/ls.3010160104.
[6] S. Aralihalli, S. K. Biswas, Grafting of dispersants on MoS 2 nanoparticles
in base oil lubrication of steel, Tribology Letters 49 (1) (2013)
61–76. doi:10.1007/s11249-012-0042-5.
[7] W. Liu, S. Chen, An investigation of the tribological behaviour of
surface-modified zns nanoparticles in liquid paraffin, Wear 238 (2)
(2000) 120–124. doi:10.1016/S0043-1648(99)00344-0.
[8] L. Wang, Y. Gao, Z. Li, A. Zhou, P. Li, Preparation and tribological
properties of surface-modified zns nanoparticles, Lubrication Science
27 (4) (2015) 241–250, lS-14-0003-RA-LS.R1. doi:10.1002/ls.1275.
[9] Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung, Tribological
behavior of copper nanoparticles as additives in oil, Current
Applied Physics 9 (2, Supplement) (2009) e124 – e127, nano Korea
2008 Symposium. doi:10.1016/j.cap.2008.12.050.
[10] S. J. Asadauskas, R. Kreivaitis, G. Bikulˇcius, A. Griguceviˇciene,
J. Padgurskas, Tribological effects of cu, fe and zn nano-particles,
suspended in mineral and bio-based oils, Lubrication Science 28 (3)
(2016) 157–176. doi:10.1002/ls.1307.
[11] G. Liu, X. Li, N. Lu, R. Fan, Enhancing aw/ep property of lubricant oil
by adding nano al/sn particles, Tribology Letters 18 (1) (2005) 85–90.
doi:10.1007/s11249-004-1760-0.
[12] H. Y. Chu, W. C. Hsu, J. F. Lin, Scuffing mechanism during oillubricated
block-on-ring test with diamond nanoparticles as oil additive,
Wear 268 (11-12) (2010) 1423–1433. doi:10.1016/j.wear.2010.02.016.
[13] H. Chu, W. Hsu, J. c. Lin, The anti-scuffing performance of diamond
nano-particles as an oil additive, Wear 268 (7-8) (2010) 960–967, cited
By 29. doi:10.1016/j.wear.2009.12.023.
[14] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance
evaluation of nano-lubricants of fullerene nanoparticles in refrigeration
mineral oil, Current Applied Physics 9 (2, Supplement) (2009) e128 –
e131, nano Korea 2008 Symposium. doi:10.1016/j.cap.2008.12.054.
[15] H. Huang, J. Tu, L. Gan, C. Li, An investigation on tribological properties
of graphite nanosheets as oil additive, Wear 261 (2) (2006) 140–
144. doi:10.1016/j.wear.2005.09.010.
[16] T. Jun, X. Qunji, A graphite intercalation compound additive in oil, Lubrication
Science 8 (4) (1996) 353–358. doi:10.1002/ls.3010080403.
[17] D.-L. Cursaru, C. Andronescu, C. Pirvu, R. Ripeanu, The efficiency
of co-based single-wall carbon nanotubes (SWnts) as an
aw/ep additive for mineral base oils, Wear 290-291 (2012) 133–139.
doi:10.1016/j.wear.2012.04.019.
[18] C.-x. Gu, G.-j. Zhu, L. Li, X.-y. Tian, G.-y. Zhu, Tribological effects of oxide
based nanoparticles in lubricating oils, Journal of Marine Science
and Application 8 (1) (2009) 71–76. doi:10.1007/s11804-009-8008-1.
[19] A. H. Battez, R. Gonzalez, J. Viesca, J. Fernandez, J. D. Fernandez,
A. Machado, R. Chou, J. Riba, Cuo, ZrO2 and zno nanoparticles as
antiwear additive in oil lubricants, Wear 265 (3-4) (2008) 422–428.
doi:10.1016/j.wear.2007.11.013.
[20] M.-J. Kao, C.-R. Lin, Evaluating the role of spherical titanium oxide
nanoparticles in reducing friction between two pieces of cast iron, Journal
of Alloys and Compounds 483 (1-2) (2009) 456–459, 14th International
Symposium on Metastable and Nano-Materials (ISMANAM-
2007). doi:10.1016/j.jallcom.2008.07.223.
[21] C. Turta, S. Melnic, D. Prodius, F. Macaev, H. Stoeckli-Evans, P. Ruiz,
D. Muraviev, S. Pogrebnoi, Z. Ribkovskaia, V. Mereacre, Y. Lan,
A. K. Powell, Sunflower oil coating on the nanoparticles of iron(iii) oxides,
Inorganic Chemistry Communications 13 (12) (2010) 1402–1405.
doi:10.1016/j.inoche.2010.07.046.
[22] Z. Hu, R. Lai, F. Lou, L. Wang, Z. Chen, G. Chen, J. Dong,
Preparation and tribological properties of nanometer magnesium borate
as lubricating oil additive, Wear 252 (5-6) (2002) 370–374.
doi:10.1016/S0043-1648(01)00862-6.
[23] Q. Sunqing, D. Junxiu, C. Guoxu, Tribological properties of CeF3
nanoparticles as additives in lubricating oils, Wear 230 (1) (1999) 35–
38. doi:10.1016/S0043-1648(99)00084-8.
[24] R. Liu, X. Wei, D. Tao, Y. Zhao, Study of preparation and tribological
properties of rare earth nanoparticles in lubricating oil, Tribology
International 43 (5-6) (2010) 1082–1086, special Issue on
Second International Conference on Advanced Tribology (iCAT2008).
doi:10.1016/j.triboint.2009.12.026.
[25] Q. Sunqing, D. Junxiu, C. Guoxu, Wear and friction behaviour of
CaCO3 nanoparticles used as additives in lubricating oils, Lubrication
Science 12 (2) (2000) 205–212. doi:10.1002/ls.3010120207.
[26] P. Ye, X. Jiang, S. Li, S. Li, Preparation of NiMoO2S 2 nanoparticle and
investigation of its tribological behavior as additive in lubricating oils,
Wear 253 (5-6) (2002) 572–575. doi:10.1016/S0043-1648(02)00042-
X.
[27] E. F. Rico, I. Minondo, D. G. Cuervo, The effectiveness of ptfe nanoparticle
powder as an ep additive to mineral base oils, Wear 262 (11–12)
(2007) 1399–1406. doi:10.1016/j.wear.2007.01.022.
[28] M. Fiedler, R. Sanchez, E. Kuhn, J. M. Franco, Influence of oil
polarity and material combination on the tribological response of
greases formulated with biodegradable oils and bentonite and highly
dispersed silica acid, Lubrication Science 25 (6) (2013) 397–412.
doi:10.1002/ls.1207.
[29] W. Tuszy´ nski, W. Piekoszewski, Effect of the type and concentration of
lubricating additives on the antiwear and extreme pressure properties
and rolling fatigue life of a four-ball tribosystem, Lubrication Science
18 (4) (2006) 309–328. doi:10.1002/ls.25.
[30] F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metallurgical
and Materials Transactions A 39 (12) (2008) 2804–2814.
doi:10.1007/s11661-008-9603-5.
[31] Q.-Q. Liao, G.-D. Zhou, H.-H. Ge, L.-M. Qi, Characterisation
of surface film on iron samples treated with octadecylamine,
Corrosion Engineering, Science and Technology 42 (2)
(2007) 102–105. arXiv:http://dx.doi.org/10.1179/174327807X159880,
doi:10.1179/174327807X159880.
[32] S. Mallakpour, M. Madani, Use of silane coupling agent for surface
modification of zinc oxide as inorganic filler and preparation
of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine
moieties, Bulletin of Materials Science 35 (3) (2012) 333–339.
doi:10.1007/s12034-012-0304-8.
[33] B. Arkles, Silane coupling agents: Connecting across boundaries
(2014).
[34] J. Skibinski, J. Rebis, T. Wejrzanowski, K. Rozniatowski, K. Pressard,
K. Kurzydlowski, Imaging resolution of afm with probes modified with
fib, Micron 66 (2014) 23–30. doi:10.1016/j.micron.2014.05.001.
[35] T. Wejrzanowski, W. Spychalski, K. Ró˙zniatowski, K. Kurzydłowski, Image
based analysis of complex microstructures of engineering materials
18 (2008) 33–39.
[36] T. Wejrzanowski, M. Lewandowska, K. Kurzydłowski, Stereology of
nanomaterials, Image Analysis and Stereology 29 (1) (2010) 1–12.doi:10.5566/ias.v29.p1-12.
[37] D. Zhu, Effect of surface roughness on mixed ehd lubrication
characteristics, Tribology Transactions 46 (1) (2003)
44–48. arXiv:http://dx.doi.org/10.1080/10402000308982598,
doi:10.1080/10402000308982598.
[38] L. Lin, Assessment of effects of surface roughness and oil viscosity on
friction coefficient under lubricated rolling-sliding conditions, Komatsu
Technical Report 59 (166).
[39] M. R. Lovell, M. A. Kabir, P. L. Menezes, C. F. Higgs, Influence of
boric acid additive size on green lubricant performance, Philosophical
Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 368 (1929) (2010) 4851–4868.
arXiv:http://rsta.royalsocietypublishing.org/content/368/1929/4851.full.pdf,
doi:10.1098/rsta.2010.0183.
[40] S. Achanta, D. Drees, J.-P. Celis, Investigation of friction on hard homogeneous
coatings during reciprocating tests at micro-newton normal
forces, Wear 263 (7–12) (2007) 1390–1396, 16th International Conference
on Wear of Materials. doi:10.1016/j.wear.2006.12.013.
[41] M. Sulek, A. Kulczycki, A. Malysa, Assessment of lubricity of compositions
of fuel oil with biocomponents derived from rape-seed, Wear
268 (1–2) (2010) 104–108. doi:10.1016/j.wear.2009.07.004.
Parenago, C. A. Migdal, P. E. Stott, Surface-capped molybdenum sulphide
nanoparticles — a novel type of lubricant additive, Lubrication
Science 16 (3) (2004) 207–214. doi:10.1002/ls.3010160302.
[2] L. Rapoport, N. Fleischer, R. Tenne, Fullerene-like WS 2 nanoparticles:
Superior lubricants for harsh conditions, Advanced Materials 15 (7-8)
(2003) 651–655. doi:10.1002/adma.200301640.
[3] J. Padgurskas, R. Rukuiza, I. Prosycevas, R. Kreivaitis, Tribological
properties of lubricant additives of fe, cu and co
nanoparticles, Tribology International 60 (2013) 224–232.
doi:10.1016/j.triboint.2012.10.024.
[4] S. Chen, W. Liu, Oleic acid capped pbs nanoparticles:
Synthesis, characterization and tribological properties, Materials
Chemistry and Physics 98 (1) (2006) 183–189.
doi:10.1016/j.matchemphys.2005.09.043.
[5] W. Zhang, S. Chen, W. Liu, L. Yu, Friction and wear behaviour
of sialon (ca,mg)-sialon with lubrication by coated pbs nanoparticles
as oil additives, Lubrication Science 16 (1) (2003) 47–56.
doi:10.1002/ls.3010160104.
[6] S. Aralihalli, S. K. Biswas, Grafting of dispersants on MoS 2 nanoparticles
in base oil lubrication of steel, Tribology Letters 49 (1) (2013)
61–76. doi:10.1007/s11249-012-0042-5.
[7] W. Liu, S. Chen, An investigation of the tribological behaviour of
surface-modified zns nanoparticles in liquid paraffin, Wear 238 (2)
(2000) 120–124. doi:10.1016/S0043-1648(99)00344-0.
[8] L. Wang, Y. Gao, Z. Li, A. Zhou, P. Li, Preparation and tribological
properties of surface-modified zns nanoparticles, Lubrication Science
27 (4) (2015) 241–250, lS-14-0003-RA-LS.R1. doi:10.1002/ls.1275.
[9] Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung, Tribological
behavior of copper nanoparticles as additives in oil, Current
Applied Physics 9 (2, Supplement) (2009) e124 – e127, nano Korea
2008 Symposium. doi:10.1016/j.cap.2008.12.050.
[10] S. J. Asadauskas, R. Kreivaitis, G. Bikulˇcius, A. Griguceviˇciene,
J. Padgurskas, Tribological effects of cu, fe and zn nano-particles,
suspended in mineral and bio-based oils, Lubrication Science 28 (3)
(2016) 157–176. doi:10.1002/ls.1307.
[11] G. Liu, X. Li, N. Lu, R. Fan, Enhancing aw/ep property of lubricant oil
by adding nano al/sn particles, Tribology Letters 18 (1) (2005) 85–90.
doi:10.1007/s11249-004-1760-0.
[12] H. Y. Chu, W. C. Hsu, J. F. Lin, Scuffing mechanism during oillubricated
block-on-ring test with diamond nanoparticles as oil additive,
Wear 268 (11-12) (2010) 1423–1433. doi:10.1016/j.wear.2010.02.016.
[13] H. Chu, W. Hsu, J. c. Lin, The anti-scuffing performance of diamond
nano-particles as an oil additive, Wear 268 (7-8) (2010) 960–967, cited
By 29. doi:10.1016/j.wear.2009.12.023.
[14] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance
evaluation of nano-lubricants of fullerene nanoparticles in refrigeration
mineral oil, Current Applied Physics 9 (2, Supplement) (2009) e128 –
e131, nano Korea 2008 Symposium. doi:10.1016/j.cap.2008.12.054.
[15] H. Huang, J. Tu, L. Gan, C. Li, An investigation on tribological properties
of graphite nanosheets as oil additive, Wear 261 (2) (2006) 140–
144. doi:10.1016/j.wear.2005.09.010.
[16] T. Jun, X. Qunji, A graphite intercalation compound additive in oil, Lubrication
Science 8 (4) (1996) 353–358. doi:10.1002/ls.3010080403.
[17] D.-L. Cursaru, C. Andronescu, C. Pirvu, R. Ripeanu, The efficiency
of co-based single-wall carbon nanotubes (SWnts) as an
aw/ep additive for mineral base oils, Wear 290-291 (2012) 133–139.
doi:10.1016/j.wear.2012.04.019.
[18] C.-x. Gu, G.-j. Zhu, L. Li, X.-y. Tian, G.-y. Zhu, Tribological effects of oxide
based nanoparticles in lubricating oils, Journal of Marine Science
and Application 8 (1) (2009) 71–76. doi:10.1007/s11804-009-8008-1.
[19] A. H. Battez, R. Gonzalez, J. Viesca, J. Fernandez, J. D. Fernandez,
A. Machado, R. Chou, J. Riba, Cuo, ZrO2 and zno nanoparticles as
antiwear additive in oil lubricants, Wear 265 (3-4) (2008) 422–428.
doi:10.1016/j.wear.2007.11.013.
[20] M.-J. Kao, C.-R. Lin, Evaluating the role of spherical titanium oxide
nanoparticles in reducing friction between two pieces of cast iron, Journal
of Alloys and Compounds 483 (1-2) (2009) 456–459, 14th International
Symposium on Metastable and Nano-Materials (ISMANAM-
2007). doi:10.1016/j.jallcom.2008.07.223.
[21] C. Turta, S. Melnic, D. Prodius, F. Macaev, H. Stoeckli-Evans, P. Ruiz,
D. Muraviev, S. Pogrebnoi, Z. Ribkovskaia, V. Mereacre, Y. Lan,
A. K. Powell, Sunflower oil coating on the nanoparticles of iron(iii) oxides,
Inorganic Chemistry Communications 13 (12) (2010) 1402–1405.
doi:10.1016/j.inoche.2010.07.046.
[22] Z. Hu, R. Lai, F. Lou, L. Wang, Z. Chen, G. Chen, J. Dong,
Preparation and tribological properties of nanometer magnesium borate
as lubricating oil additive, Wear 252 (5-6) (2002) 370–374.
doi:10.1016/S0043-1648(01)00862-6.
[23] Q. Sunqing, D. Junxiu, C. Guoxu, Tribological properties of CeF3
nanoparticles as additives in lubricating oils, Wear 230 (1) (1999) 35–
38. doi:10.1016/S0043-1648(99)00084-8.
[24] R. Liu, X. Wei, D. Tao, Y. Zhao, Study of preparation and tribological
properties of rare earth nanoparticles in lubricating oil, Tribology
International 43 (5-6) (2010) 1082–1086, special Issue on
Second International Conference on Advanced Tribology (iCAT2008).
doi:10.1016/j.triboint.2009.12.026.
[25] Q. Sunqing, D. Junxiu, C. Guoxu, Wear and friction behaviour of
CaCO3 nanoparticles used as additives in lubricating oils, Lubrication
Science 12 (2) (2000) 205–212. doi:10.1002/ls.3010120207.
[26] P. Ye, X. Jiang, S. Li, S. Li, Preparation of NiMoO2S 2 nanoparticle and
investigation of its tribological behavior as additive in lubricating oils,
Wear 253 (5-6) (2002) 572–575. doi:10.1016/S0043-1648(02)00042-
X.
[27] E. F. Rico, I. Minondo, D. G. Cuervo, The effectiveness of ptfe nanoparticle
powder as an ep additive to mineral base oils, Wear 262 (11–12)
(2007) 1399–1406. doi:10.1016/j.wear.2007.01.022.
[28] M. Fiedler, R. Sanchez, E. Kuhn, J. M. Franco, Influence of oil
polarity and material combination on the tribological response of
greases formulated with biodegradable oils and bentonite and highly
dispersed silica acid, Lubrication Science 25 (6) (2013) 397–412.
doi:10.1002/ls.1207.
[29] W. Tuszy´ nski, W. Piekoszewski, Effect of the type and concentration of
lubricating additives on the antiwear and extreme pressure properties
and rolling fatigue life of a four-ball tribosystem, Lubrication Science
18 (4) (2006) 309–328. doi:10.1002/ls.25.
[30] F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metallurgical
and Materials Transactions A 39 (12) (2008) 2804–2814.
doi:10.1007/s11661-008-9603-5.
[31] Q.-Q. Liao, G.-D. Zhou, H.-H. Ge, L.-M. Qi, Characterisation
of surface film on iron samples treated with octadecylamine,
Corrosion Engineering, Science and Technology 42 (2)
(2007) 102–105. arXiv:http://dx.doi.org/10.1179/174327807X159880,
doi:10.1179/174327807X159880.
[32] S. Mallakpour, M. Madani, Use of silane coupling agent for surface
modification of zinc oxide as inorganic filler and preparation
of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine
moieties, Bulletin of Materials Science 35 (3) (2012) 333–339.
doi:10.1007/s12034-012-0304-8.
[33] B. Arkles, Silane coupling agents: Connecting across boundaries
(2014).
[34] J. Skibinski, J. Rebis, T. Wejrzanowski, K. Rozniatowski, K. Pressard,
K. Kurzydlowski, Imaging resolution of afm with probes modified with
fib, Micron 66 (2014) 23–30. doi:10.1016/j.micron.2014.05.001.
[35] T. Wejrzanowski, W. Spychalski, K. Ró˙zniatowski, K. Kurzydłowski, Image
based analysis of complex microstructures of engineering materials
18 (2008) 33–39.
[36] T. Wejrzanowski, M. Lewandowska, K. Kurzydłowski, Stereology of
nanomaterials, Image Analysis and Stereology 29 (1) (2010) 1–12.doi:10.5566/ias.v29.p1-12.
[37] D. Zhu, Effect of surface roughness on mixed ehd lubrication
characteristics, Tribology Transactions 46 (1) (2003)
44–48. arXiv:http://dx.doi.org/10.1080/10402000308982598,
doi:10.1080/10402000308982598.
[38] L. Lin, Assessment of effects of surface roughness and oil viscosity on
friction coefficient under lubricated rolling-sliding conditions, Komatsu
Technical Report 59 (166).
[39] M. R. Lovell, M. A. Kabir, P. L. Menezes, C. F. Higgs, Influence of
boric acid additive size on green lubricant performance, Philosophical
Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 368 (1929) (2010) 4851–4868.
arXiv:http://rsta.royalsocietypublishing.org/content/368/1929/4851.full.pdf,
doi:10.1098/rsta.2010.0183.
[40] S. Achanta, D. Drees, J.-P. Celis, Investigation of friction on hard homogeneous
coatings during reciprocating tests at micro-newton normal
forces, Wear 263 (7–12) (2007) 1390–1396, 16th International Conference
on Wear of Materials. doi:10.1016/j.wear.2006.12.013.
[41] M. Sulek, A. Kulczycki, A. Malysa, Assessment of lubricity of compositions
of fuel oil with biocomponents derived from rape-seed, Wear
268 (1–2) (2010) 104–108. doi:10.1016/j.wear.2009.07.004.
Published
2017-07-21
How to Cite
REBIS, Janusz et al.
Cheap nano-clay additive as a lubricating enhancer.
Journal of Power Technologies, [S.l.], v. 97, n. 2, p. 103--109, july 2017.
ISSN 2083-4195.
Available at: <https://papers.itc.pw.edu.pl/index.php/JPT/article/view/973>. Date accessed: 16 dec. 2024.
Issue
Section
Materials Science
Keywords
Nano-particles; lubricating properties; HFRR; mineral oil
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).