Multiple approach to analysis of H2O injection into a gas turbine

Paweł Ziółkowski, Janusz Badur, Krzysztof Jesionek, Andrzej Chrzczonowski

Abstract


This paper presents a thermodynamic analysis of the Brayton cycle and an upgrade to it involving the injection of H2O into
the gas turbine cycle. Upgrades are generally considered to be environmentally-friendly solutions and lead to an increase in
efficiency, but in the literature there is no clear answer as to what type of upgrade is the best. Computational Flow Mechanics
codes have been used for numerical analysis of: the Brayton simple cycle, the Brayton cycle with water injection into the
compressor and with regeneration prior to the combustion chamber, the STIG (steam injection gas turbine), and the CSTIG
(combined steam injection gas turbine) system. Different ways of analyzing H2O injection into the gas turbine cycle are
discussed.

Keywords


gas turbine, steam injection, regeneration, water injection, water recovery

Full Text:

PDF

References


E. Directive, Directive 2010/75/eu of the european parliament and of

the council of 24 november 2010 on industrial emissions (integrated

pollution prevention and control), Official Journal of the European

Union L 334 (2010) 17–119.

R. Carapellucci, A. Milazzo, Repowering combined cycle power plants

by a modified stig configuration, Energy Conversion and Management

(5) (2007) 1590–1600.

A. Poullikkas, An overview of current and future sustainable gas turbine

technologies, Renewable and Sustainable Energy Reviews 9 (5)

(2005) 409–443.

M. A. Saad, D. Y. Cheng, The new lm2500 cheng cycle for power generation

and cogeneration, Energy conversion and management 38 (15)

(1997) 1637–1646.

P. Ziółkowski, M. Lema´ nski, J. Badur, L. Nastałek, Power augmentation

of pge gorzow’s gas turbine by steam injection - thermodynamic

overview, Rynek Energii 98 (2) (2012) 161–167.

K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Power enhancement

of the brayton cycle by steam utilization, Archives of Thermodynamics

(3) (2012) 36–47.

A. Chrzczonowski, K. Jesionek, B. J., P. Ziółkowski, Analysis of operation

of combined stig installation, in: Producerea, Transportul¸si Utilizarea

Energiei, Volumul Conferin¸tei S¸ tiin¸ta Moderna˘s¸i Energia SME

, Universitatea Technic˘adin Cluj-Napoca, Cluj-Napoca, 2012, pp.

–73.

T. Srinivas, A. Gupta, B. Reddy, Sensitivity analysis of stig based combined

cycle with dual pressure hrsg, International journal of thermal

sciences 47 (9) (2008) 1226–1234.

D. Y. Cheng, Regenerative parallel compound dual-fluid heat engine,

uS Patent 4,128,994 (Dec. 12 1978).

V. de Biasi, Cln uprates 501 to 6 mw with under 18 ppm nox and zero

co, Gas Turbine World 42 (4) (2012) 10–13.

K. Jesionek, A. Chrzczonowski, J. Badur, M. Lema´ nski, On the parametric

analysis of performance of advanced cheng cycle, Zeszyty

Naukowe Katedry Mechaniki Stosowanej Politechniki S´ la˛skiej 23

(2004) 12–23, in Polish.

G. Polonsky, M. Livshits, A. I. Selwynraj, S. Iniyan, L. Suganthi,

A. Kribus, Annual performance of the solar hybrid stig cycle, Solar Energy

(2014) 278–291.

W. Kordylewski, Combustion and Fuels, Wroclaw University of Technology

Publ., 2000, in Polish.

J. Skorek, J. Kalina, Gas turbines cogeneration units, WNT,Warszawa,

, in Polish.

J. Badur, Numerical Modeling of Sustainable Combustion at Gas Turbine,

IF-FM PAS, Gda´nsk, 2003, in Polish.

Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Thermodynamic, ecological

and economic aspects of the use of the gas turbine for heat

supply to the stripping process in a supercritical chp plant integrated

with a carbon capture installation, Energy Conversion and Management

(2014) 750–763.

V. deBiasi, Combined cycle heat rates at simple cycle $/kW plant costs,

Gas Turbine World 43 (2) (2013) 22–29.

F. Wang, J.-S. Chiou, Performance improvement for a simple cycle gas

turbine genset—-a retrofitting example, Applied Thermal Engineering

(10) (2002) 1105–1115.

P. Ziółkowski, J. Badur, Clean gas technologies-towards zero-emission

repowering of pomerania, Transactions of the Institute of Fluid-Flow

Machinery 124 (2012) 51–80.

M. Jonsson, J. Yan, Humidified gas turbines—a review of proposed

and implemented cycles, Energy 30 (7) (2005) 1013–1078.

K. Nishida, T. Takagi, S. Kinoshita, Regenerative steam-injection gasturbine

systems, Applied Energy 81 (3) (2005) 231–246.

A. Chrzczonowski, Cheng cycle as proecological electrical and heat

energy source, Ph.D. thesis, Wroclaw University of Technology, Wroclaw,

in Polish (2006).

J. Topolski, Combustion diagnosis in combined gas-steam cycle, Ph.D.

thesis, IF-FM PASci, Gda´nsk (2002).

K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Enhancement

of the brayton cycle efficiency by water or steam utilization, Transactions

of the Institute of Fluid-Flow Machinery 124 (2012) 93–109.

J. A. Goli ´ nski, K. Jesionek, Combined air/steam power plants, Vol. 39,

Maszyny Przepływowe, Gda´nsk, 2009, in Polish.

M. De Paepe, E. Dick, Technological and economical analysis of water

recovery in steam injected gas turbines, Applied Thermal Engineering

(2) (2001) 135–156.

A.W. Sinjawin, S. D. Frołow,W.W. Smancier, Optymalization of parameters

of rotary condenser-separator in stig with recovery water system,

in: Charkow, 1997, pp. 50–54, in Russian.

K. Wójs, P. Szulc, T. Tietze, Odzysk i zagospodarowanie niskotemperaturowego

ciepła odpadowego ze spalin wylotowych [Low-temperature

waste heat recovery from exchaust gases], Wydawnictwo Naukowe

PWN SA, 2015, in Polish.

J. Badur, M. Karcz, R. Kucharski, M. Lema´ nski, S. Kowalczyk,

A. Wi´sniewski, S. Lewandowski, Technical Economic and Environmental

Aspects Combined Cycle Power Plants, Gda´nsk UT Press, Gda´nsk,

, Ch. Numerical modeling of degradation effects in a gas turbine

silo-combustion chamber, pp. 135–143.

J. Badur, P. Ziółkowski, D. Sławi´ nski, S. Kornet, An approach for estimation

of water wall degradation within pulverized-coal boilers, Energy

(2015) 142–152.

J. Sowi´ nski, Analysis of electricity production costs in the system power plant, Polityka Energetyczna 10 (2) (2007) 229–239, in Polish.

R. Bartnik, Combined cycle power plant. Thermal and economic effectiveness,

WNT, Warsaw (2009), 2012.

M. P. Boyce, Gas turbine engineering handbook, Butterworth-

Heinemann, Houston, 2002.

Press office of Energa Group.

URL http://media.energa.pl

Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a

supercritical coal-fired chp plant integrated with an absorption carbon

capture installation, Energy 64 (2014) 513–523.

M. Brze˛czek, M. Job, The economic comparison of combined cycle

power plants without and with carbon capture installation, Rynek Energii

(3) (2014) 88–92, in Polish.

J. Kotowicz, M. Brze˛czek, M. Job, The thermo - economic analysis of

the supercritical oxy - type unit integrated with the orc modules, Rynek

Energii 118 (3) (2015) 64–71, in Polish.

A. Skorek-Osikowska, L. Bartela, J. Kotowicz, Thermodynamic and

economic evaluation of a co2 membrane separation unit integrated

into a supercritical coal-fired heat and power plant, Journal of Power

Technologies 95 (3) (2015) 201–210.

J. Szargut, W. Stanek, Thermo-ecological optimization of a solar collector,

Energy 32 (4) (2007) 584–590.

Z. Gnutek, On the goli ´ nski-jesionek multistage combined air/steam

systems with external combustion, Transactions of the Institute of

Fluid-Flow Machinery 126 (2014) 33–54.

D. Mikielewicz, J. Wajs, P. Ziółkowski, J. Mikielewicz, Utilisation of

waste heat from the power plant by use of the orc aided with bleed

steam and extra source of heat, Energy 97 (2016) 11–19.


Refbacks

  • There are currently no refbacks.