Model-based research on a micro cogeneration system with Stirling engine

Adrian Albin Chmielewski, Robert Gumiński, Jędrzej Mączak, Przemysław Szulim


One of the elements and purposes of the climate-energy policy of the European Union is to increase the efficiency of conversion
of the energy from fossil fuels. Managing high-temperature heat losses which accompany the technological processes,
especially in thermal power engineering, serves this goal. An example of effective use of this heat is through the application
of distributed generation devices (including: fuel cells, microturbines, and Stirling engines), which produce in combination
electric energy, or mechanical energy and heat. This paper presents research into a micro cogeneration system with a Stirling
engine, using nitrogen as a working gas. A crucial element of the research is model-based analysis of changes in selected
thermodynamic parameters, including among others: pressure change in the working cylinder. The presented comparison of
the research results, as well as the results of simulation, effectively support the prediction processes as regards the system.

Full Text:



EUCO 169/14 Conclusions, accessed 25.09.2015 (23/24 October



B. Knopf, P. Nahmmacher, E. Schmid, The european renewable energy

target for 2030–an impact assessment of the electricity sector,

Energy policy 85 (2015) 50–60.

A. Calvo-Silvosa, S. I. Antelo, I. Soares, et al., The european lowcarbon

mix for 2030: The role of renewable energy sources in an

environmentally and socially efficient approach, Renewable and Sustainable

Energy Reviews 48 (2015) 49–61.

A. Chmielewski, R. Gumi´ nski, S. Radkowski, P. Szulim, Aspekty wsparcia

i rozwoju mikrokogeneracji rozproszonej na terenie polski, Rynek

energii 5 (114) (2014) 94–101, in Polish.

Directive 2004/8/EC of the European Parliament and of the council of

February 2004 on the promotion of cogeneration based on a useful

heat demand in the internal energy market and amending Directive


J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal

combustion engine fuelled by natural gas operating in distributed generation,

Energy Procedia 14 (2012) 1478–1483.

J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski,

Variant analysis of the structure and parameters of sofc hybrid systems,

in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ,

, pp. 306–312.

A. Chmielewski, R. Gumin´ski, K. Lubikowski, J. Ma˛czak, P. Szulim,

Badania układu mikrokogeneracyjnego z silnikiem stirlinga. cze˛s´c´ i [research

on the micro cogeneration system with stirling engine. part i],

Rynek Energii 119 (4) (2015) 42–48, in Polish.

A. Chmielewski, R. Guminski, S. Radkowski, P. Szulim, Experimental

research and application possibilities of microcogeneration system

with stirling engine, Journal of Power Technologies 95 (5) (2015) 14–

A. Chmielewski, R. Gumin´ski, K. Lubikowski, J. Ma˛czak, P. Szulim,

Badania układu mikrokogeneracyjnego z silnikiem stirlinga. Cze˛s´c´ ii

[research on the micro cogeneration system with stirling engine. Part

ii], Rynek Energii 120 (5) (2015) 53–60, in Polish.

T. Li, D. Tang, Z. Li, J. Du, T. Zhou, Y. Jia, Development and test of a

stirling engine driven by waste gases for the micro-chp system, Applied

thermal engineering 33 (2012) 119–123.

C.-H. Cheng, H.-S. Yang, B.-Y. Jhou, Y.-C. Chen, Y.-J. Wang, Dynamic

simulation of thermal-lag stirling engines, Applied energy 108 (2013)


C.-H. Cheng, H.-S. Yang, L. Keong, Theoretical and experimental

study of a 300-w beta-type stirling engine, Energy 59 (2013) 590–599.

M. Reséndiz-Antonio, M. Santillán, On the dynamical vs. thermodynamical

performance of a -type stirling engine, Physica A: Statistical

Mechanics and its Applications 409 (2014) 162–174.

G. Xiao, C. Chen, B. Shi, K. Cen, M. Ni, Experimental study on heat transfer of oscillating flow of a tubular stirling engine heater, International

Journal of Heat and Mass Transfer 71 (2014) 1–7.

L. Scollo, P. Valdez, S. Santamarina, M. Chini, J. Baron, Twin cylinder

alpha stirling engine combined model and prototype redesign, International

Journal of Hydrogen Energy 38 (4) (2013) 1988–1996.

C.-H. Cheng, Y.-J. Yu, Dynamic simulation of a beta-type stirling engine

with cam-drive mechanism via the combination of the thermodynamic

and dynamic models, Renewable energy 36 (2) (2011) 714–725.

C.-H. Cheng, Y.-J. Yu, Combining dynamic and thermodynamic models

for dynamic simulation of a beta-type stirling engine with rhombic-drive

mechanism, Renewable energy 37 (1) (2012) 161–173.

A. Jankowski, M. Jez, A. Swider, Investigation of non-linear dynamics

of crankshaft assembly, Journal of KONES. Internal Combustion

Engines 7 (1-2) (2000) 217–227.

M. Jez˙, A. S´wider, Analiza drgan´ nieliniowych jednocylindrowego silnika

tłokowego, Journal of KONES 8 (3-4) (2001) 98–105, in Polish.

A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a

dynamic model of crankshaft assembly with three degrees of freedom,

in: Methods and Models in Automation and Robotics (MMAR), 2015

th International Conference on, IEEE, 2015, pp. 1038–1043.

D. Berchowitz, I. Urieli, Stirling Cycle Engine Analysis, Adam Hilger

Ltd, Bristol, 1984.

R. Shoureshi, Analysis and design of stirling engines for waste-heat

recovery, Ph.D. thesis, Massachusetts Institute of Technology (June


G. Walter, Stirling Engines, Oxford University Press, New York, 1980.

D. M. Berchowitz, Stirling cycle engine design and optimisation, Ph.D.

thesis (1986).

M. Campos, J. Vargas, J. Ordonez, Thermodynamic optimization of a

stirling engine, Energy 44 (1) (2012) 902–910.

S. Toghyani, A. Kasaeian, M. H. Ahmadi, Multi-objective optimization

of stirling engine using non-ideal adiabatic method, Energy Conversion

and Management 80 (2014) 54–62.

S. Toghyani, A. Kasaeian, S. H. Hashemabadi, M. Salimi, Multi-objective optimization of gpu3 stirling engine using third order analysis,

Energy Conversion and Management 87 (2014) 521.529.

M. Babaelahi, H. Sayyaadi, Simple-ii: A new numerical thermal model

for predicting thermal performance of stirling engines, Energy 69

(2014) 873.890.

Y. Timoumi, I. Tlili, S. B. Nasrallah, Performance optimization of stirling

engines, Renewable Energy 33 (9) (2008) 2134.2144.

Y. Timoumi, I. Tlili, S. B. Nasrallah, Design and performance optimization

of gpu-3 stirling engines, Energy 33 (7) (2008) 1100.1114.

N. Parlak, A. Wagner, M. Elsner, H. S. Soyhan, Thermodynamic analysis

of a gamma type stirling engine in non-ideal adiabatic conditions,

Renewable Energy 34 (1) (2009) 266.273.

M. Babaelahi, H. Sayyaadi, A new thermal model based on polytropic

numerical simulation of stirling engines, Applied Energy 141 (2015)


M. H. Ahmadi, M. A. Ahmadi, S. A. Sadatsakkak, M. Feidt, Connectionist

intelligent model estimates output power and torque of stirling

engine, Renewable and Sustainable Energy Reviews 50 (2015) 871.

F. Sala, C. Invernizzi, D. Garcia, M.-A. Gonzalez, J.-I. Prieto, Preliminary

design criteria of stirling engines taking into account real gas

effects, Applied Thermal Engineering 89 (2015) 978.989.

C. J. Paul, A. Engeda, Modeling a complete stirling engine, Energy 80

(2015) 85.97.

P. Alcan, A. Balin, H. BaCsl.gil, Fuzzy multicriteria selection among cogeneration

systems: a real case application, Energy and Buildings 67

(2013) 624.634.

C.-H. Cheng, H.-S. Yang, Theoretical model for predicting thermodynamic

behavior of thermal-lag stirling engine, Energy 49 (2013) 218.

J. A. Araoz, M. Salomon, L. Alejo, T. H. Fransson, Non-ideal stirling

engine thermodynamic model suitable for the integration into overall

energy systems, Applied Thermal Engineering 73 (1) (2014) 205.221.

F. Sala, C. M. Invernizzi, Low temperature stirling engines pressurised

with real gas effects, Energy 75 (2014) 225.236.

F. Formosa, G. Despesse, Analytical model for stirling cycle machine

design, Energy Conversion and Management 51 (10) (2010) 1855.

A. J. Organ, The regenerator and the Stirling engine, Mechanical Engineering

Publications Limited, London, 1997.

S. .Zmudzki, Silniki Stirlinga [Stirling Engines],Wydawnictwa Naukowo-

Techniczne, Warsaw, 1993.

R. Gheith, F. Aloui, S. B. Nasrallah, Determination of adequate regenerator

for a gamma-type stirling engine, Applied Energy 139 (2015)



  • There are currently no refbacks.