Simplified numerical model of magnetocaloric cooling device

Paweł Płuszka, Daniel Lewandowski, Ziemowit Miłosz Malecha

Abstract


In the present paper the laboratory scale test stand of a magnetic cooling device is briefly introduced. One set of measurements,
for a given geometry of a magnetic bed filled with gadolinium, are presented and used as reference results for
developing a zero-dimensional (0D) mathematical model. The 0D model assumes adiabatic heat transfer in the magnetic bed
and thermal interaction of the system with surrounding ambient air. Moreover, it takes into consideration the basic dimensions
of the bed geometry. Its results give a theoretical upper limit of a temperature span of the proposed magnetic cooling device.
The ultimate goal of the proposed 0D numerical model is to gain insight into the basic physics needed to build a full CFD
model and optimize system efficiency so as to approach the theoretical temperature limits.


Keywords


magnetic refrigeration; AMR gadolinium cycle; zero-dimensional modeling

Full Text:

PDF

References


M. Isaac, D. van Vuuren, Modeling global residential sector energy demand

for heating and air conditioning in the context of climate change,

Energy Policy 37 (2) (2009) 507–521.

R. Teverson, T. Peters, M. Freer, J. Radcliffe, L. Koh, et al., Doing cold

smarter, Tech. rep. (2015).

K. Sandeman, Magnetocaloric materials: the search for new systems,

Scripta Materialia 67 (6) (2012) 566–571.

A. Smith, C. Bahl, R. Bjørk, K. Engelbrecht, K. Nielsen, P. N., Materials

challenges for high performance magnetocaloric refrigeration devices,

Advanced Energy Materials 11 (2) (2012) 1288–1318.

S. Fähler, Caloric effects in ferroic materials: New concepts for cooling,

Energy Technology 6 (8) (2018) 1394–1396.

N. de Oliveira, P. von Ranke, Theoretical aspects of the magnetocaloric

effect, Physics Reports 489 (4) (2010) 89–159.

F. Casanova i Fernàndez, Magnetocaloric effect in Gd5(SixGe1-x)4

alloys, Ph.D. thesis, Universitat de Barcelona (2014).

URL http://hdl.handle.net/10803/1789

V. Pecharsky, K. Gschneider Jr, Advanced magnetocaloric materials:

what does the future hold?, International Journal of Refrigeration 29 (8)

(2009) 1239–1249.

V. Franco, J. Blázquez, J. Ipus, J. Law, L. Moreno-Ramírez, A. Conde,

Magnetocaloric effect: From materials research to refrigeration devices,

Progress in Materials Science 93 (2018) 112–232.

A. Tishin, Y. Spichkin, The magnetocaloric effect and its applications,

Materials Today 6 (11) (2003) 51.

V. Pecharsky, K. Gschneider Jr, Magnetocaloric effect and magnetic

refrigeration, Journal of Magnetism and Magnetic Materials 200 (1-3)

(1999) 44–56.

G. Brown, Magnetic heat pumping near room temperature, Journal of

Applied Physics 47 (8) (1976) 3673–3680.

R. Bjørk, C. Bahl, A. Smith, D. Christensen, P. N., An optimized magnet

for magnetic refrigeration, Journal of Magnetism and Magnetic Materials

(21) (2010) 3324–3328.

R. Bjørk, C. Bahl, A. Smith, P. N., Review and comparison of magnet

designs for magnetic refrigeration, International Journal of Refrigeration

(3) (2010) 437–448.

K. Engelbrecht, K. Nielsen, P. N., An experimental study of passive

regenerator geometries, International Journal of Refrigeration 34 (8)

(2011) 1817–1822.

B. Yu, M. Liu, P. Egolf, A. Kitanovski, A review of magnetic refrigerator

and heat pump prototypes built before the year 2010, International

Journal of Refrigeration 13 (6) (2010) 1029–1066.

S. Benford, G. Brown, Magnetic heat pumping near room temperature,

Journal of Applied Physics 52 (3) (1982) 2110.

B. Ponomarev, Magnetic properties of gadolinium in the region of paraprocess,

Journal of Magnetism and Magnetic Materials 61 (1-2) (1986)

–138.

V. Pecharsky, K. Gschneider Jr, Magnetocaloric effect from indirect

measurements: Magnetization and heat capacity, Journal of Applied

Physics 86 (1) (1999) 568.

Y. S. Koshkid’ko, J. C´ wik, T. Ivanova, S. Nikitin, M. Miller, K. Rogacki,

Magnetocaloric properties of gd in fields up to 14 t, Journal of Magnetism

and Magnetic Materials 433 (2017) 234–238.

T. Okamura, Im-provement of 100 w class room temperature magnetic

refrigerator, Proceedings 2nd International Confer-enee on Magnetic

Refrigeration at Room Temperature, 2007 (2007) 377–382.

K. Engelbrecht, D. Eriksen, C. Bahl, R. Bjørk, J. Geyti, J. Lozano,

K. Nielsen, S. F., A. Smith, P. N., Experimental results for a novel rotary

active magnetic regenarator, International Journal of Refrigeration

(6) (2012) 1498–1505.

D. Arnold, A. Tura, A. Ruebsaat-Trott, A. Rowe, Design improvements

of a permanent magnet active magnetic refrigerator, International Journal

of Refrigeration 37 (2014) 99–105.

S. Jacobs, J. Auringer, A. Boeder, J. Chell, L. Komorowski, J. Leonard,

S. Russek, C. Zimm, The performance of a large-scale rotary magnetic

refrigerator, International journal of refrigeration 37 (2014) 84–91.

T. Lei, K. Engelbrecht, K. Nielsen, C. Veje, Study of geometries of

active magnetic regenerators for room temperature magnetocaloric refrigeration,

Applied Thermal Engineering 111 (2017) 1232–1243.

A. Czernuszewicz, J. Kaleta, D. Kołosowski, D. Lewandowski, Experimental

study of the effect of regenerator bed length on the performance

of a magnetic cooling system, International Journal of Refrigeration

(2019) 49–55.

S. Churchill, H. Chu, Correlating equations for laminar and turbulent

free convection from vertical plates, International Journal of Heat and

Mass Transfer 18 (11) (1975) 1323–1329.

S. Churchill, Laminar free convection from a horizontal cylinder with

a uniform heat flux density, Letters in Heat and Mass Transfer 2 (1)

(1974) 109–111.


Refbacks

  • There are currently no refbacks.