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Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland

Abstract

This paper presents a new approach in combustion process optimization using an integrated solution of immune inspired
optimizer (SILO) and acoustic temperature measurement system (AGAM). The solution maintains optimal temperature dis-
tribution by on-line, automatic and model based process control. The goal is to increase boiler efficiency, improve process
parameters and minimize the environmental impact. This paper includes a description of system components—SILO and
AGAM— and the designed solution for an existing, coal-fired power unit. The unit is already equipped with the AGAM system
and identification tests conducted previously informed the design.
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1. Introduction

A range of advanced solutions for control, optimization and
monitoring of industrial processes are available on the mar-
ket. Most of them, like combustion optimization systems,
have been developed on the basis of experience from many
deployments, making them more suitable for their role. This
is a key factor in achieving improved results in process per-
formance. Future development of software optimization sys-
tems for industrial processes should focus on integration and
utilization of information from other advanced systems, e.g.,
gas temperature measurement systems. In power boilers,
the temperature distribution of combustion gases, measured
on-line and directly in the furnace, provides valuable infor-
mation about the quality of the combustion process. It is
a good indicator of whether the fuel and combustion air are
distributed properly. An imbalance in the gas temperature
indicates an imbalance in the fuel and combustion air distri-
bution. This, in consequence, causes higher CO, NOX emis-
sions and an imbalance in steam temperatures—higher cool-
ing spray flow and higher excess air. All those parameters
have a negative influence on the performance of the combus-
tion process—boiler efficiency and environmental impact.
This imbalance in gas temperature can be reduced by ad-
justments in fuel and combustion air distribution [1, 2].
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The combustion process in coal-fired, power boilers is
a complex process, with a large number of input, output
and disturbance signals. Mostly, it is not stable due to the
load profile and the accompanying change of operating coal
milling configuration or coal quality, resulting in permanent
imbalances in gas temperatures. By monitoring the temper-
ature distribution and adjusting the fuel and combustion air
distribution systematically these imbalances can be reduced.
Central to achieving this aim is maintaining the combustion
process at the optimal point at all times and across the whole
range of boiler load. SILO and AGAM are applied to help
meet this goal.

2. Acoustic gas temperature measuring technol-
ogy—AGAM

Since contactless temperature measuring technology has
proven its ability in industrial applications, in-furnace gas
temperature distribution has become a very important indi-
cator of the quality of the combustion process. It has a direct
influence on all combustion parameters and, consequently,
on efficiency and environmental impact.

Conventional measuring systems e.g. thermocouples
measure temperature only at a single point and their max-
imum range reaches only 1300◦C. Additionally, to measure
the temperature distribution on a horizontal cross section of
the furnace, multiple sensors are required, which is a chal-
lenge in light of the in-furnace conditions. This and radiation
error are the main reason why a new generation of measur-
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Figure 1: An example of industrial application of an AGAM system

ing technology—contactless measuring—is becoming more
popular.

In power boilers contactless technologies enable on-line
measurement of gas temperature and its distribution across
the furnace. There are two, well known, physical principles
used to develop commercial systems: dependency of light
absorption (laser) and dependency sound speed (acoustic)
on temperature of the medium being measured. In this paper
the authors focus only on acoustic technology [3].

The physical principle behind acoustic technology is the
relation between temperature, chemical properties of a gas,
and the sound speed in the gas. The following equation rep-
resents this relation:

C =

√
κ · B
M
· T (1)

where: C—speed of sound, κ—adiabatic coefficient,
B—universal gas constant, M—molecular weight, T—gas
temperature.

In industrial applications, the system consists of transmit-
ters and receivers placed at the same level of the furnace.
The distance between transmitter and receiver creates a sin-
gle measuring path. The set of transmitters and receivers
creates multiple paths, which in turn create a measuring sur-
face. In Fig. 1 an example configuration of an AGAM system
is presented, from an existing power plant: Rybnik, unit 4.

The configuration consists of 8 transmitters/receivers. It
creates 21 measuring paths.

The system measures temperature through each path
based on the “flight time” of sound impulses. In each loop
a single transmitter generates a sound impulse and all re-
ceivers are “listening”. After receiving the impulse, the sys-
tem calculates the flight time—the time difference between
the sending and receiving of the sound impulse. Once all
transmitters have finished, the system calculates final tem-
peratures through each path. The results may be presented
as an isothermal contour plot and average temperature of
sub-areas. The example results are presented in Fig. 2.

3. Combustion process optimization software—SILO

The combustion process in power boilers is highly com-
plex. It is characterized by a large number of control signals
e.g. fuel and air distribution; process parameters e.g. NOX,

Figure 2: AGAM results presentation a) average temperature of sub-areas;
b) isotherms plot

CO emission, steam and flue gas temperatures, boiler effi-
ciency; disturbance signals e.g. boiler load, operating coal
milling configuration or coal quality. Additionally, this is a dy-
namic and non-linear process with long response time. That
is why it is not easy for operators to maintain the process at
optimal point using standard SISO (Single Input Single Out-
put) control algorithms.

SILO is a software system designed for advanced control
of MIMO processes (Multi Input Multi Output), especially the
combustion process. It is inspired by the immune system of
living creatures and represents a new approach in advanced
control of industrial processes. The most commonly used
solutions are based on predictive control algorithms with re-
ceding horizon. Each MPC (Model Predictive Control) con-
troller computes setpoints in control vector for consecutive
moments, based on a dynamic model of the process. This
control trajectory seeks to minimize the difference between
process output signals and their demand values in the corre-
sponding consecutive moments.

Despite all the advantages of MPC controllers, there are
also significant disadvantages, which become more mean-
ingful, when it comes to the combustion process. The disad-
vantages were described in [4], but here cited briefly. One of
them is the cost of implementation due to the long and labor-
consuming parametric tests needed to define the dynamic,
mathematical model of the process.

The second disadvantage of MPC solutions is their weak
ability to adapt to long-term changes in process characteris-
tics. Changes can be observed in every industrial process.
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Figure 3: The architecture of SILO implementation in layered control struc-
ture

In the case of combustion, changes in process characteris-
tics may be caused by factors such as wearing or failure of
boiler devices, reconfiguration of the boiler construction (de-
NOX) or changes in chemical properties of the substrates
e.g. fuel. To keep the high effectiveness levels of MPC con-
trollers, the mathematical model has to be fine-tuned peri-
odically. This means that parametric tests must be repeated
and, consequently, the cost increases. The other solution is
to implement an automatic adaptation method. This, how-
ever, implies further problems like estimation of model pa-
rameters of highly noised signals with low changeability or
estimation of model parameters when operating in normal
conditions, in closed loop.

Those two disadvantages of MPCs—high implementation
cost and weak adaptability motivated researchers to develop
a new solution. SILO eliminates the disadvantages of MPC
solutions by its architecture, which is inspired by the immune
system of living creatures.

SILO seeks to perform automatic, on-line optimization
of industrial processes at the current operating point. In
other words, through integration with DCS (Distributed Con-
trol System), the optimizer monitors process output signals
and, based on mathematical model of the process and opti-
mization priorities, calculates setpoints of the controlled sig-
nals [5]. The general architecture of the layered control struc-
ture with SILO is presented in Fig. 3.

Operators are the main supervisors of the process. So,
SILO requires their permission to start operating, as well as
permission to use particular controlled devices during opti-
mization. After the operators start the optimization, the sys-
tem calculates setpoints or setpoint corrections for control
structures, which operate in the base control layer e.g. the
PID controller of O2 content in flue gases. If the optimization
is stopped, SILO tracks the operators’ setpoints.

In general, SILO consists of two main, independent mod-

Figure 4: An example time window of Knowledge Gathering module

ules: the Optimization module and the Knowledge Gather-
ing module. During optimization the system updates deci-
sion vector md periodically. The time between subsequent
changes of the md vector cannot be shorter than the time
needed to reach a new process steady state (e.g. 5 to 20
minutes for the combustion process). Independently from
the Optimization module, the Knowledge Gathering module
monitors input—mc, output—y and disturbance—d signals
to collect new knowledge items. If the monitored signals sat-
isfy specific conditions, the knowledge item is saved in the
database and used by the Optimization module in the next
optimization steps.

The Knowledge Gathering module is tasked with iden-
tifying relations between process inputs mc and out-
puts y—knowledge items, as well as updating averages
of the control vector mc for various process operating
points—targets. The knowledge items are used by the Op-
timization module when operating in the Model Based layer,
and the targets are used by the Optimization module when
operating in the Transition State layer.

The Knowledge Gathering module analyzes short-term
historical values in specific time windows. An example time
window is presented in Fig. 4.

Each window must include a key change of at least one
element of the mc vector while process disturbances d are
constant. Process responses to a given mc change are au-
tomatically identified and stored in the knowledge database
as a single knowledge item. Each knowledge item consists
of: time stamp, change of control vector—mc, change of pro-
cess outputs—y and disturbance signals—d. SILO’s knowl-
edge is stored in thousands of knowledge items and is used
by the Optimization module when it calculates the mathemat-
ical model of the process.

On the basis of the model, the Optimization module cal-
culates a change in the control vector to minimize the per-
formance indicator. In general, the performance indicator is
a sum of penalty functions of each monitored process output
signal and each decision signal. It is defined by the following
formula:
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Figure 5: Example settings of penalty function for NOX
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where: αk—linear penalty coefficient for k-th control vari-
able, βk—square penalty coefficient for k-th control variable,
γk—linear penalty coefficient for k-th monitored process out-
put, δk—square penalty coefficient for k-th monitored pro-
cess output, τlm

k —insensitivity zone for linear penalty for k-th
control variable, τsm

k —insensitivity zone for square penalty
for k-th control variable, τ

ly
k —insensitivity zone for linear

penalty for k-th monitored process output, τsy
k —insensitivity

zone for square penalty for k-th monitored process output,
(.)+—"positive" operator (x)+ = 1

2 (x + |x|), m̃c
k—current value

for k-th control variable, ỹk—current value for k-th moni-
tored process output, m̂c

k—setpoint for k-th control variable,
ŷk—predicted value for k-th o monitored process output.|

An example of the penalty function of NOX is presented in
Fig. 5.

A penalty of a signal is calculated if the difference be-
tween the measured value and demand values is higher than
the tolerance—insensitivity range. In the example above,
the demand value of NOX emission is 200 mg/Nm3, the
linear insensitivity zone is 20 mg/Nm3 and square insen-
sitivity zone is 80 mg/Nm3. If the measured NOX emis-
sion is within 180–220 mg/Nm3 then the penalty equals
0—SILO focus on other parameters. If the NOX is lower
than 180 mg/Nm3 or higher than 220 mg/Nm3 then the linear
penalty is calculated. The penalty is higher if the emission
goes lower than 180 mg/Nm3 and higher than 220 mg/Nm3.
Additional—square penalty is calculated if the NOX emis-
sion is lower than 120 mg/Nm3 or higher than 280 mg/Nm3.
This represents an automatic change of optimization priori-
ties—the penalty increases rapidly.

Depending on process state and knowledge about the pro-
cess, SILO can change the optimization strategy automati-
cally [5].

At the very beginning of SILO implementation the knowl-
edge database is empty and the system is unable to obtain
the model of the process. In this case SILO operates in
a Quasi Random Extremum Control layer. The goal for this
layer is to collect new and improve existing knowledge. Op-
erating in this layer, the optimizer manipulates the md vector

Figure 6: Fuel and air distribution system in K-4 boiler, in Rybnik Power
Plant

in a specific way, as required by the Knowledge Gathering
module. The process is also optimized, but in a long-time
horizon.

If there are enough knowledge items in the database,
SILO is able to obtain a mathematical model of the process
and starts to operate in the Model Based Optimization layer.
Operating in this layer SILO performs precise optimization,
because setpoints are calculated based on the model. The
model is created using the newest knowledge items, specific
for the current operating point. At the beginning of each opti-
mization step, the optimization algorithm selects the newest
knowledge items, which represent process characteristics of
the current operating point.

The two layers presented above are designed for steady
state optimization. If operating point of the process is chang-
ing, SILO switches to the Transition State layer. In this case,
the optimizer monitors the operating point continuously and
applies adequate md vector targets to move it close to the
optimum settings for the specific operating point [6, 7].

4. Details of AGAM-SILO-DCS integration

The approach of AGAM-SILO-DCS integration will be pre-
sented for an existing boiler in Rybnik Power Plant.

The Rybnik Power Plant is a baseload plant, which con-
sists of 8 units with OP-650 type boilers. Boiler no 4 (K-4) is
equipped with in-furnace sensing technology—AGAM, pro-
vided by Bonnenberg + Drescher Projektentwicklug GmbH.
The integration of AGAM-SILO-DCS requires a special anal-
ysis of boiler construction, boiler control structures, operating
regime and process parameters.

K-4 is a coal-fired boiler with 24 front-wall, low-NOX burn-
ers (3 levels). The fuel is supplied by 6 coal pulveriz-

— 311 —



Journal of Power Technologies 97 (4) (2017) 308–313

ers. The combustion air is distributed by 12 secondary air
dampers and 2 OFA levels (level II—6 dampers, level III—10
dampers). OFA dampers level II are installed on the front
wall and OFA dampers level III are installed on the rear wall.
The boiler is also equipped with protective air, supplied from
the bottom, which protect the rear waterwall against corro-
sion. The fuel and air distribution system of this boiler is
presented in Fig. 6.

Initially, the AGAM system was installed in this boiler to
support SNCR control. The AGAM measurements are avail-
able in DCS system. 12 temperatures of each sub-area
are defined as standard temperature measurements and the
contour map plot is displayed on the operators’ graphic. Ini-
tial analyses of AGAM data showed that for this boiler, tem-
perature distribution is a good indicator of combustion pro-
cess quality [8]. Additional analysis of process parameters
revealed that some parameters could be improved:

• Process efficiency, calculated on-line, decreases with
load increase.

• At low load range, superheat and reheat steam temper-
atures are permanently below the setpoints—540◦C.

• At low load range, the difference between left and right
reheat steam temperatures is relatively large.

• There is potential to reduce cooling spray flow.

• NOX emission fluctuations are too high.

• Peaks of CO emissions are high and the emissions stay
at an elevated level for a long time.

The AGAM-SILO-DCS integration starts with installation of
SILO and communication with DCS (Distributed Control Sys-
tem). To optimize the process and solve the operating prob-
lems in this particular boiler, SILO will monitor the following
process outputs:

• Superheat and reheat steam temperatures on the left
and right side;

• Superheat and reheat spray flow on the left and right
side;

• NOX and CO emissions on the left and right side;

• O2 content and temperature of flue gases;

• AGAM temperatures.

Those parameters will be maintained, by automatic SILO
control of the following devices:

• Oxygen stepoint—1 signal;

• Secondary air dampers—12 signals;

• OFA II—6 signals;

• OFA III—2 signals;

Table 1: Optimization results on process symmetry

Parameter Unit Before
OPT

Afer
OPT

Change

Superheated steam
temperature

°C 4.86 4.29 11.7%

Reheated steam
temperature

°C 4.88 4.65 4.7%

O2 % 1.23 1.15 6.5%
NOX mg/Nm3 87.75 78.7 10.3%
CO mg/Nm3 -106.59 -89.63 15.9%

• Protective air dampers—2 signals;

• Coal feeders—6 signals.

SILO, thanks to its architecture, will learn the relation of the
controlled devices to process parameters. Based on this
knowledge SILO will calculate setpoints to perform balanced
combustion, as indicated by AGAM temperatures. The op-
timizer will also monitor the other process signals. If, for
some reason, AGAM temperatures are balanced but stan-
dard measurement not, SILO must have the knowledge and
ability to reduce this imbalance, even if the AGAM tempera-
tures subsequently become imbalanced.

Table 1 below presents the results of analysis of the
process parameters after the first phase of the integration
project. At this stage, the optimization was focused on pro-
cess symmetry. All monitored parameters were improved,
which is a good starting point for further optimization [9].

Table 1 presents the very first results of combustion opti-
mization with the integrated AGAM-SILO-DCS solution. At
this project stage it was assumed that balanced AGAM tem-
perature distribution helps to balance combustion parame-
ters. So, during this period the goal for SILO was to monitor
AGAM temperature distribution and control the boiler to keep
the AGAM temperatures balanced.

The results from Table 1 show that the goal for this stage
of the project was achieved. The main output signals of the
combustion process were balanced, which means the differ-
ence between the left and right side of the boiler was re-
duced. The main reason for imbalanced combustion was
a huge imbalance in O2. The temperature distribution is
strictly related to O2 content in combustion gases [1]. Bal-
ancing the temperature distribution affects the O2 balance
and, finally, other combustion parameters such as CO, NOX

and steam temperatures.

5. Conclusion

The advantage of software advanced control/optimization
systems over manual operation relies on regularity. Even if
operators are trained in how to use e.g. temperature distribu-
tion information for combustion process control, they will not
beat a well-implemented advance control/optimization sys-
tem. This is because process operators have many other
duties and parameters to monitor, but those software sys-
tems are dedicated exclusively to combustion. Depending
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on the process requirements, they are able to collect infor-
mation about the process every 5–10 second and calculate
new setpoints every 3–5 minutes.

Integrating SILO-AGAM into the processes at Rybnik
would increase combustion performance. The analyses con-
ducted suggest that boiler efficiency could be increased by
over 0.2% without violating any other process parameters or
constraints. Higher boiler efficiency means lower coal con-
sumption, as well as lower CO2 and SOX emission. Addition-
ally, superheated and reheated steam temperatures will im-
prove and CO emission reduced. NOX will stay at the same,
desired level—350 mg/Nm3.
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Nomenclature

(.)+ positive operator (x)+ = 1
2 (x+ | x |)

αk linear penalty coefficient for k-th control variable

αk linear penalty coefficient for k-th control variable

βk square penalty coefficient for k-th control variable

δk square penalty coefficient for k-th monitored process out-
put

γk linear penalty coefficient for k-th monitored process out-
put

κ adiabatic coefficient

τlm
k insensitivity zone for linear penalty for k-th control vari-

able

τ
ly
k insensitivity zone for linear penalty for k-th monitored pro-

cess output

τsm
k insensitivity zone for square penalty for k-th control vari-

able

τ
sy
k insensitivity zone for square penalty for k-th monitored

process output

m̃c
k current value for k-th control variable

ỹk current value for k-th monitored process output

m̂c
k setpoint for k-th control variable

ŷk predicted value for k-th o monitored process output

B universal gas constant

C speed of sound

d process disturbances vector (e.g.: unit load, mills config-
uration)

M molecular weight

mc vector of controlled devices’ feedback (e.g.: O2 content
in combustion gasses feedback, OFA position feedback,
etc.)

md decision vector (e.g.: O2 setpoint, auxiliary air and OFA
dampers setpoint from SILO)

m f optimization permissions vector of each controlled de-
vice

mp operators’ setpoints vector (e.g.: operator demand for
oxygen, etc.)

mt traced setpoints (e.g.: O2 setpoint, auxiliary air and OFA
dampers setpoint from DCS)

T gas temperature

y optimized process outputs (e.g.: NOX and CO emission,
steam temperatures, etc.)
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