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Abstract

Due to intense electricity consumption, environmental concerns and technological development, a great number
of renewable distributed resources have been widely installed in the distributed network. However, the reality
that renewable distributed resources frequently fluctuate under high penetration makes effective use a challenge.
Fortunately, with improved communication architecture and control techniques, this could be achieved by a Virtual
Power Plant (VPP). VPP can aggregate various resources in a distributed generation portfolio, by creating one
single operating profile. The aim of this paper is mainly to analyze optimal scheduling of VPP to maximize its
profit, with due consideration given to the uncertainty of renewable energy output, such as wind power, and to
make the energy mix respond to system need. A risk quantization method (CVaR) is introduced to deal with
uncertainty. This paper presents a VPP scheduling model, which takes VPP total operation cost, traded electricity
cost, unit earnings, supply-demand balancing and other constraints into account, with a CVaR assessment method
embedded into this model. According to the scenarios generated by uncertainty of wind power output, numerical
results for a proposed case are discussed. These results show the expected profit of VPP scheduling is closely
associated with different degrees of confidence , which is a great help for VPP operators when making the tradeoff
between risk and profit.

Keywords: Distributed generation; Virtual Power Plant (VPP); Conditional value at risk (CVaR); Uncertainty;
Profit;

1. Introduction

Along with the implementation of increasingly strin-
gent environmental protection laws and regulations in
every country, and the continued upward pressure on
environmental issues, people are increasingly inclined
to choose clean, environmentally friendly and renew-
able energy systems, of which perhaps the most at-
tractive is the development of distributed energy re-
sources (DERs). DERs usually include distributed gen-
eration, which refers to the micro hydroturbine, micro
wind turbine, photovoltaic power generation and micro
gas turbine, energy storage system, and temperature
controlled load on the demand side. DER will play a

∗Corresponding author
Email address: scxyh@foxmail.com (Yuhang XIA )

very important role in the future energy structure, as it
can not only provide clean energy supply and improve
energy efficiency, but also reduce emissions of green-
house gases caused by the large number of conven-
tional fossil fuel generating units [1–4]. Since DERs are
usually directly installed on the user side of the distribu-
tion network instead of connecting to the main grid, this
makes the power flow in the distribution network display
the characteristic of bidirectional flow. Although theoret-
ically the total generating capacity of DERs can replace
conventional generators, because of natural conditions
and cost control DERs cannot provide the necessary
ancillary service support for the main grid when a crit-
ical situation occurs on the system side. If DERs are
not managed effectively, it will increase investment cost
and sharply increase system operation cost, which af-
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fects the absorption of DERs by the system in return [5–
7] To achieve free and flexible access in the distribu-
tion system for DERs, the concept of a Virtual Power
Plant (VPP) was proposed. VPP can gather together all
DERs in a given region through advanced internal com-
munication and control architecture, delivering effective
management of large-scale, decentralized DERs [8–
10], and make various different DERs’ operating pa-
rameters generate an external unified operating profile,
which means the VPP can represent all DERs when
participating in the electricity market and offer bidding
to the main grid. VPP can provide high reliability, high
quality, high security and always available power ser-
vice for the system, making the management of a large
number of DERs more efficient and thereby enhancing
the stability of system operation. Generally speaking,
VPP has the three following major characteristics: (1)
VPP emphasizes the "wide area" characteristics, which
means power generation equipment in VPP has very
wide spatial distribution, however, VPP does not own
any power plant entities and cannot form a power plant
entity like conventional power plants [11]; (2) the main
application for VPP is to integrate renewable energy
and demand side resources, so the power output of in-
tegration can show a similar or identical technical fea-
ture to conventional power plants, for example, provid-
ing an upper and lower limit of output, operation cost
curve, reserve capacity, ramp rate, frequency and volt-
age profile to dispatch center [12]; (3) the assets in
VPP are not necessarily owned by the VPP generation
company. The relationship between the VPP genera-
tion company and DERs is the scheduling of the energy
flow, the allocation of currency flow and the share of in-
formation flow, which is very much akin to the relation-
ship between the traditional power grid dispatch center,
trading center and power plant [13]. However, due to
the uncertainty of the output power of the wind turbine,
photovoltaic and other renewable distributed genera-
tion, and the uncertainty of the electricity price, the VPP
needs to consider the risk caused by uncertainty when
the VPP makes its scheduling decision. So, a method
is proposed to deal with the risk caused by uncertainty
in VPP scheduling. For example, Ernan Ni [14] ap-
plied the algorithm of combined Lagrangian relaxation
and stochastic dynamic programming to solve the daily
market optimization formulation of a generation com-
pany (Genco) under risk management in the deregu-
lated power industry, which significantly reduced rev-
enue variances and Genco’s bidding risk. To cope with
the uncertainty caused by short-term wind power out-

put, Xiaohu Li [15] used VaR(Value at Risk) to quantify
the risk caused by wind power, and took the VaR as
the penalty factor into the short-term operation model of
hybrid power system, which showed that the expected
value of system operation cost played a very impor-
tant role in risk management, and encouraged power
suppliers to make a more accurate forecast of wind
power with a view to gaining more revenue. For the ac-
quisition of optimal spinning reserve under large wind
power penetration, Junli Wu [16] proposed a kind of
cost-CVaR model to deal with load forecast error and
deviations of wind power, by analyzing various risk lev-
els, and the desired tradeoff between profit and risk was
made. This paper proposes conditional value at risk
(CVaR) to analyze the impact of a various unit output
portfolio on the VPP overall scheduling cost in light of
the uncertainty of wind power output, to maximize the
expected profit assuming a given risk level which re-
flected the imbalance in VPP scheduling. This paper is
organized as follows. Section 2 introduces the compo-
sition of VPP, the internal control strategy and market
frame. Section 3 describes the proposed risk manage-
ment method. Section 4 presents the VPP schedul-
ing cost formulation under the risk of deviation of wind
power. Section 5 describes the case study. And finally,
Section 6 concludes the main findings of this work.

2. VPP Description

2.1. VPP Components

The typical structure of a VPP is shown in Fig.1. As
shown in Fig.1, VPP includes a micro combined heat
and power generation unit (αCHP), micro wind turbine,
photovoltaic (PV), micro conventional distributed gen-
eration, storage system (including energy and heat),
and a certain amount of demand side resources (con-
trollable load). VPP gathers together varieties of dis-
tributed power generation, through advanced commu-
nication technology and software management, form-
ing a whole controllable power generation system. Be-
cause of the power output fluctuation of wind turbine
and PV, VPP needs to trade energy with an external
distribution network. When the power output of VPP
surpasses the internal load demand, VPP can make an
electricity transaction to an upstream network by offer-
ing a certain amount of ancillary services, which is Pexp

in Fig. 1. When the internal power of VPP is insufficient
to meet the load profile, VPP can make a purchase of
electricity from the grid by a virtual tie line, which is Pimp

in Fig.1.
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Figure 1: The Structure of VPP

2.2. Internal control strategy of VPP
There are two types of control mode for the man-

agement of VPP, centralized control and dispersed con-
trol [17]. Centralized control mode [18] provides a top-
down approach to managing distributed generation in
the region. In this mode, the distributed generation
units are directly controlled by a control coordination
center (CCC) and all distributed generation units trans-
mit system load demand signals to CCC. After these
signals are processed by algorithm in CCC, distributed
generation controllers (DGC) which are near the dis-
tributed generation units will receive unit relevant infor-
mation such as power generation scheduling, unit start-
stop status and so on, then the units will operate as the
signal instructed. This control architecture allows CCC
to put into effect the management plan of distributed
generation. When there is enough or insufficient elec-
tricity in VPP, CCC carries out the electricity sale or pur-
chase to gain extra profit or meet the load profile by the
virtual tie line of VPP-grid. This kind of mode means
CCC can execute the technical and economic functions
of VPP to obtain the maximum benefit in the energy
and reserve market of the grid through bidding. While
in decentralized control mode, VPP usually uses hierar-
chical control architecture to govern distributed gener-
ation [19], which mainly includes two major control lay-
ers, the lower layer and the high layer. In the lower level
control, various DERs are managed by the local con-
troller (LC), and DGs are controlled by LC with a logical
algorithm. To develop an integrated system, each LC
is connected one after another to form a circle struc-
ture, and the information is mutual exchanged, then the
lower layer transmits the information which it assembled

to the high layer control center. The high layer control
center will coordinate the power output of various dis-
tributed generation. In this paper, VPP is presumed to
be centrally controlled and aims to maximize the total
profit of VPP.

2.3. Power market framework of VPP

As Figure 1 showed, VPP plays two roles in the elec-
tric power market trading: utilizing the balance market
with bidding and offering for balancing the load profile of
VPP like every other conventional generator. First, VPP
will forecast the next 24 hours load demand and energy
price levels through historical data, then CCC in the
VPP calculates the generation scheduling of each dis-
tributed generation according to power capacity, ramp
rate, unit operation status and other unit parameters,
and submits it to each distributed generation, allowing
distributed generation to bid in the day ahead power
market of system. If there is a shortage of electricity or
an electricity surplus in VPP, VPP can engage in real-
time energy exchange with the grid by the virtual tie
line.

3. Problem formulation

3.1. Risk measure (CVaR)

When X is represented as an invest portfolio vector,
random vector Y ∈ Rm (Rm is represented as m dimen-
sional real space) denotes random factors in the mar-
ket, the loss function of X can be denoted by f (x, y).
If the joint probability density function of Y is p(Y), for
a certain value of X, the probability value caused by Y
which does not exceed critical value (α represented a
certain level of loss) can be expressed by:

ψ (X, α) =

ˆ

f (x,y)≤α

p(Y)dY (1)

in the expression, X ∈ Ω, Ω is a subset of n dimen-
sional real space Rn, Ω denotes a feasible solution of
the portfolio.ψ(X, α) is the loss of cumulative distribution
function under X. If the confidence level of loss func-
tion f (x, y) caused by Y is β, which is no more than α,
then αβ(X) and φβ(X) can denote the value at risk(VaR),
CVaR of the loss function of X, respectively. αβ(X) and
φβ(X) can be calculated by:

αβ(X) = min{α ∈ R : ψ (X, α) ≥ β} (2)
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φβ(X) =
1

1 − β

ˆ

f (X,Y)≥αβ(X)

f (X,Y)p(Y)dY (3)

in (3), φβ(X) is the CVaR when loss is greater
than αβ(X). Because it is very difficult to obtain
the analytical expression of αβ(X), the transformation
functionFβ(X, α) is introduced to replace φβ(X) to sim-
plify the calculation of CVaR:

Fβ(X, α) = α +
1

1 − β

ˆ

Y∈Rm

( f (X,Y) − α)+ p(Y)dY (4)

Because Rockafekkar and Uryasev [20] proved that
Fβ(X, α) is a convex and continuous function regarding
α, so CVaR can be obtained by minimizingFβ(X, α):

CVaR = min
x∈X,α

Fβ(X, α) (5)

in (4),( f (X,Y) − α)+ denotes the maximum value of
{ f (X,Y) − α, 0}, which can use historical data of Y or
the Monte Carlo simulation method to estimate the in-
tegral term of (4). If Y1,Y2 . . . YN are the sample data,
the estimate value of Fβ(x, α)is:

F̂β(X, α) = α +
1

Nc(1 − β)

N∑
k=1

( f (X,Yk) − α)+ (6)

3.2. Uncertainty modeling of renewable energy gener-
ation output

VPP contains a large number of renewable dis-
tributed generation units, such as wind turbines and
photovoltaic units. The output of these units was limited
by wind speed or illumination intensity because of typi-
cal stochastic characteristics, resulting in uncertainty of
the overall output of VPP. So renewable energy gener-
ation modeling is necessarily required. To assume that
the upper limit and the lower limit of the output of wind
turbine or photovoltaic in one scheduling period areP̄S

R
and PS

R , the reference value of output isP̃R(t) and the
variance value is ε(t) , then the outputs uncertainty of
wind turbine or photovoltaic units in VPP can be de-
scribed as follows:

PR (t) = P̃R(t) + ε(t); ε ≤ ε(t) ≤ ε̄; PS
R ≤

24∑
t=1

PR(t) ≤ P̄S
R


(7)

3.3. VPP total cost function modeling

VPP total cost function (TCF) includes the start-up
cost and operation cost of distributed generation:

CTCF =
∑

i∈S ds,t=1:24

(
Cdg,i,t(Pdg,i,t · Ii,t) + S Cdg,i,t · Ji,t

)
+

∑
k∈S str

Cstr,k,t(Pstr,k,t) (8)

3.4. Traded electricity cost of VPP- grid

Due to the fluctuation characteristics of renewable
distribution generation outputs in VPP and the absence
of large capacity conventional generating units in it,
when there is a power shortage or surplus in VPP, VPP
will make the electricity transactions with the main grid
though a virtual tie line to meet the load profile, so
traded electricity cost can be stated as follows:

J =

24∑
t=1

[
−αt xα (t) − βt xβ (t)

]
Pm (t) (9)

in (9), xα(t)) and xβ(t) are state variable of power
purchase and power selling of VPP in T time inter-
val, respectively. When Pm(t) < 0,xα(t) = 1, or when
Pm(t) > 0, xβ(t) = 1, which are restrained:

xk(t) = {0, 1}, k = α, or, β

xα(t) + xβ(t) ≤ 1

(10)

3.5. Objective function

In this paper, we assume that the outputs of dis-
tributed generation will be settled with a unified price
in the energy market, and the uncertainty outputs of
the wind turbines lead to different levels of income fluc-
tuations of VPP in the energy market, showing certain
risk characteristics, causing power producers in VPP
to take a different risk attitude during the transaction,
which leads to significant differences in market revenue.
This paper defined the negative earnings of VPP as the
loss function, and presented an operation optimization
model under risk, physical and network constraints:

min{α+
1

NC(1 − β)

NC∑
i=1

 NG∑
i=1

CTCF +

T∑
i=1

J − λ
NG∑
i=1

PG − α


+

}

(11)
In (11), NC is the sample number of wind output,

which is generated by Monte Carlo simulation, λ is retail
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electricity price, and PG is the total output of distributed
generation in VPP.

This paper uses ui to denote (
∑NG

i=1 CTCF +
∑T

i=1 J −
λ
∑NG

i=1 PG − α),so (11) can be transformed into linear
programming, which is subject to : ui ≤ 0

Constraints:
Outputs range and ramp rate of distributed genera-

tion:


Pmin

dg,i ≤ Pdg,i · Ii,t + Rdg,i,t · Ii,t ≤ Pmax
dg,i

Ri,tIi,t ≤ min
{
10 × MS Ri, Pmax

dg,i − Pdg,i,t
} (12)

Outputs range of storage system:

−
(
cap0,i − Pmin

str,i

)
≤

24∑
t=1

Pstr,i,t ≤ Pmax
str, j − cap0,i (13)

Power balance equation in VPP under the condition
of neglect of network loss:

Pm(t)+
∑
i∈S dg

Pdg, j,t +
∑
j∈S dg

Pcurt, j,t +ηstr

∑
i∈S str

Pstr,i, j = LOAD

(14)

4. Case study

The aim of this paper is to develop an optimal
scheduling model of VPP, which could make the VPP
company determine the profit-risk tradeoff by CVaR ef-
ficient frontier, offering an easily understood way of
making decisions. The case study provides a numer-
ical example, which has eight distributed generation
units. DG1, DG3, DG6 and DG7 are conventional dis-
tributed units. DG2 and DG5 are micro wind turbines,
whose rated power is 100KW, cut-in speed is 3m/s,
rated speed is 10m/s, and cut-out speed is 25m/s. DG4
and DG8 are storage systems. The output of DG2 and
DG5 will be simulated in section 4.2, and other param-
eters of units and VPP load profile are shown in Fig.2
and Fig.3, respectively. This model has been solved
by CPLEX package in Matlab, using a computer with a
2.5GHz Celeron processor and 2GB RAM.

4.1. Wind output data

Due to the uncertainty output of the wind turbine
which was described in (8), a scenario tree is usually
proposed to model the decision-making process under

Load

Distributed
Generation

DG1: 20kW 200kW, 0.01, 10.5P α β≤ ≤ = =

DG3:30kW 180kW, 0.01, 9.2

3

P

MUT MDT h

α β≤ ≤ = =

= =

DG6 :30kW 150kW, 0.01, 7

3

P

MUT MDT h

α β≤ ≤ = =

= =

DG7 :30kW 150kW, 0.01, 10.1P α β≤ ≤ = =

DG8: 20kW 180kW, 0.01, 12.7P α β≤ ≤ = =

DG4 : 20kW 175kW, 0.01, 12.6P α β≤ ≤ = =

Figure 2: VPP single line diagram

Figure 3: Load profile in VPP

the uncertainty, each node can represent a point where
the decision is made, and each branch is the expres-
sion form of output status. The first node is called the
root node where the first stage decision is made, and
the node in the final stage is called the leaf. The num-
ber of leaves is the number of scenarios [21]. This pa-
per uses the ARIMA method to generate 500 scenarios
of wind power outputs, which can approximately repre-
sent the distribution of wind power production over the
day. Because it is impossible to calculate the risk value
of VPP operation using so many scenarios, a technique
of scenario reduction is required to select the most typ-
ical subset of scenarios to cover all the information. So
the fast-forward reduction algorithm in Ref.[22]is used
to obtain the reduced sets by minimizing the probability
distance to the original sets with continuous iterative.
The time horizon chosen in this paper is 24 hours, the
generated wind power output scenarios is 10, and the
probability of each scenario is 0.1,and wind power out-
put scenarios were shown in Fig. 4.

4.2. Result analysis

Fig.5 clearly shows the extent to which the fluctua-
tion of wind turbine output can affect the profit of the
Virtual Power Plant. As Fig.5 shows, at hour 9, hour
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Figure 4: Wind power output scenarios

Figure 5: Profit distribution under scenarios (β=0.95)

11, hour 13 and hour 17, the total profit of VPP is neg-
ative, because the wind power output is lower at the
same time interval in one day and the load demand is
in rising-trend. This means that VPP has to purchase
a large amount of electricity from the main grid during
the peak demand of load profile. Furthermore, we can
also see another 3 typical time intervals, hour 1, hour 9
and hour 19. At hour 1, the wind turbine is almost close
to maximum output, 100kW, but load demand is at its
lowest, which leads to VPP selling the surplus electric-
ity to the main grid to expand earnings, and the mean
profit at hour 1 in 10 scenarios is 2022.20$. At hour
9, VPP has to purchase 102.73kW electricity from the
main grid, although the quantity of electricity purchased
is not the most in one day, but due to the maximum load
demand in daytime and the shortage of wind output,
this makes units in VPP operate at maximum capability,
which means the profit of VPP cannot cover total cost,
causing the total profit of VPP in one day to fall to its
maximum negative value, -428.90$. At hour 19, load
demand is at its highest for the whole day, even though
the wind power output is nearly 90kW, the average profit
is only 224.57$.

Figure 6: Unit output at a different degree of confidence within the
lower boundary of wind power output

Since each scenario is equally likely to occur, this pa-
per analyzes VPP operation in two extreme scenarios
at degree of confidence 0.95 and 0.99, which are the
upper and lower boundaries of wind turbine output, as
shown in Fig.6 and Fig.7.

In Fig.6, pm and pg denote traded electricity and total
unit output in VPP, respectively. As we can see, at the
lower degree of confidence (β = 0.95), VPP operator
will ignore the risk of wind power fluctuations, utilizing
most of the wind energy, which reduces the conven-
tional distributed generation in VPP. But at the higher
degree of confidence (β = 0.99), VPP limit the absorp-
tion of wind power to reduce the fluctuation, making
much greater use of conventional distributed genera-
tion, so VPP has to purchase more electricity from the
main grid. Since the cost of traded electricity is a small
proportion of total cost, even if the amount of traded
electricity at the higher degree of confidence increases
to 43.99%, the profit of VPP at the higher degree of
confidence still adds up to 20.12%.

In Fig.7, purchasing the energy from the network for
VPP at the higher confidence (β = 0.99) will increase
to 47.82% than the amount for VPP at the lower de-
gre of confidence (β = 0.95), which is greater than the
purchase amount of electricity in Fig.6 for bigger wind
power volatility, but the profit is still 16.78% more than
VPP’s at the lower degree of confidence (β = 0.95).

Fig.8 demonstrates the expected profit of VPP ver-
sus standard profit at a different degree of confidence
. Since each scenario has the same probability of oc-
currence, this enables us to derive the efficient fron-
tier, which can provide the VPP operator with the risk-
preference curve to make the tradeoff between ex-
pected profit and risk. As we also can see from Fig.8,
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Figure 7: Unit output at a different degree of confidence within the
higher boundary of wind power output

Figure 8: Expected profit versus standard deviation at a different
degree of confidence

with the increment of β, the expected profit will grow
gradually to the maximum achievable risk level.

5. Conclusion

In this paper, optimal scheduling of VPP has been
formulated and studied. Since the fluctuation of wind
turbine output poses a risk to VPP scheduling, the risk
was taken into account when building the VPP schedul-
ing objective function. Firstly, typical scenarios of wind
power output were generated using the ARIMA method
and scenarios reduction was applied to produce 10
wind output scenarios. A scheduling objective function
was then imbedded into the CVaR assessment accord-
ing the definition of loss function. An example simula-
tion was conducted and a thorough comparison at dif-
ferent degrees of confidence presented, illustrating the

efficient frontier to determine the tradeoff between ex-
pected profit and risk.

References

[1] T. Ackermann, G. Andersson, L. Söder, Distributed gener-
ation: a definition, Electric power systems research 57 (3)
(2001) 195–204.

[2] R. Walling, R. Saint, R. C. Dugan, J. Burke, L. A. Kojovic,
Summary of distributed resources impact on power delivery
systems, Power Delivery, IEEE Transactions on 23 (3) (2008)
1636–1644.

[3] P. Dondi, D. Bayoumi, C. Haederli, D. Julian, M. Suter, Network
integration of distributed power generation, Journal of Power
Sources 106 (1) (2002) 1–9.

[4] M. F. Akorede, H. Hizam, E. Pouresmaeil, Distributed energy
resources and benefits to the environment, Renewable and
Sustainable Energy Reviews 14 (2) (2010) 724–734.

[5] A. Dimeas, N. Hatziargyriou, Operation of a multiagent system
for microgrid control, Power Systems, IEEE Transactions on
20 (3) (2005) 1447–1455.

[6] C. Wang, P. Li, Development and challenges of distributed
generation, the micro-grid and smart distribution system [j],
Automation of Electric Power Systems 2 (2010) 004.

[7] H. Karami, M. J. Sanjari, S. H. Hosseinian, G. Gharehpetian,
An optimal dispatch algorithm for managing residential dis-
tributed energy resources, Smart Grid, IEEE Transactions on
5 (5) (2014) 2360–2367.

[8] Ł. B. Nikonowicz, J. Milewski, Virtual power plants-general re-
view: structure, application and optimization, Journal of Power
Technologies 92 (3) (2012) 135–149.

[9] D. Pudjianto, C. Ramsay, G. Strbac, Virtual power plant and
system integration of distributed energy resources, Renew-
able power generation, IET 1 (1) (2007) 10–16.

[10] R. Caldon, A. R. Patria, R. Turri, Optimal control of a distri-
bution system with a virtual power plant, Bulk Power System
Dynamics and Control, Cortina. d’Ampezzo, Italy.

[11] H. Saboori, M. Mohammadi, R. Taghe, Virtual power plant
(vpp), definition, concept, components and types, in: Power
and Energy Engineering Conference (APPEEC), 2011 Asia-
Pacific, IEEE, 2011, pp. 1–4.
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