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Abstract

This paper investigates the problem of boundary layer stagnation point flow and heat transfer of couple stress
fluid containing nanoparticles and flowing over an exponentially stretching surface in a porous medium. The
governing equations of the couple stress fluid model for velocity, temperature and nanoparticle profiles are
given as part of the boundary layer approach. The nonlinear partial differential equations are simplified by
using similar transformations. The analytical solutions of simplified equations are found using the homotopy
analysis method. The convergence of the HAM solutions is discussed by plotting ~-curves and also through
homotopy padé approximation. The physical features of pertinent parameters are discussed through graphs.
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1. Introduction

Fluid flow through porous media has many practi-
cal applications in physical and industrial processes.
A few commonly used examples include: fiber and
granular insulations, thermal insulation of buildings,
cores and designs of pebble bed nuclear reactors,
winding structures for high power density electric
machines, food processing and storage, underground
disposal of heavy water. Transport properties of fluid
saturated porous materials are very important in the
petroleum, and geothermal industries. Underground
crushed rock saturated with liquid changes its posi-
tion through the material under the influence of pres-
sure gradient. Rosali et al. [1] discussed the prob-
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lem of steady stagnation-point flow and heat transfer
of viscous fluid over a shrinking sheet in a porous
medium. Subsequently, Liu [2] studied the flow and
heat transfer of a steady laminar boundary layer flow
of an electrically conducting second grade fluid in a
porous medium subject to a transverse and uniform
magnetic field over a stretching sheet with power law
heat flux. Further, Nadeem and Awais [3] analyzed
the influence of variable viscosity and variable ther-
mocapillarity on the unsteady flow and heat transfer
in a thin film on a horizontal porous shrinking sheet
through porous medium. In another work, Nadeem
et al. [4] examined the magnetohydrodynamic effects
of unsteady boundary layer flow of a micropolar fluid
through a porous medium near a forward stagnation-
point of an infinite plane wall. A few other inter-
esting works concerning fluid flow through a porous
medium in different situations are referred to in [5–
10].



Journal of Power Technologies 93 (2) (2013) 122–132

Due to the high thermal conductivity of nano
sized particles, the study of nano fluids has gained
much importance in recent years. Kuznetsov and
Nield [11] discussed the problem of natural con-
vection boundary layer flow of a nanofluid past a
vertical plate. They also discussed the influence
of Brownian motion and thermophoresis over the
flow and heat transfer of nanoparticles. In a recent
work, Nadeem et al. [12] investigated the problem of
boundary layer flow and heat transfer of a nanofluid
over a vertical slender cylinder. Moreover, Ahmad
and Pop [13] reviewed the problem of mixed con-
vection heat transfer effects over the boundary layer
flow from a vertical flat plate embedded in a porous
medium filled with nanofluids. The study investi-
gated three specified nanofluids: cuprom, aluminum
and titanium. Furthermore, Xuan and Roetzel [14]
studied the heat transfer of nanofluids considering
single-phase and multi-phase features of nanofluids.
Recently, Nadeem et al. [15] surveyed the behavior
of nanoparticles for the flow of steady, axisymmetric
stagnation-point flow of a micropolar fluid in a mov-
ing cylinder. Also, Yang et al. [16] inspected the ther-
mal conductivity and viscosity effects over the flow
of nanofluids.
The purpose of the present effort is to observe poros-
ity and nano concentration effects over the flow and
heat transfer of boundary layer stagnation flow of a
couple stress fluid over an exponentially stretching
surface. The study of couple-stress fluids looks at
the effects of particle size, which is of particular in-
terest in the study of synthetic fluids, thick polymer
oils, liquid crystals and animal blood. Its enhanced
lead carrying capacity flow through a thin film is also
an important aspect of interest from the industrial
point of view [17–20]. Stagnation points refer to the
points where static pressure is the maximum. Such
type of fluid flows are common in plastic sheet extru-
sion, cooling of metallic plates, boundary layer along
the material surface handling conveyers. To the best
of the authors’ knowledge nano couple stress fluid
is still unexplored. The nonlinear partial differential
equations of conservation of mass, momentum, heat
transfer and nanoparticle concentration are simpli-
fied under boundary layer approximations and sim-
ilar similarity transformations. The resulting system
is then solved with the help of the homotopy anal-

ysis method (HAM). The problem is also provided
with a numerical solution by using the Runge-Kutta-
Fehlberg method, and a comparison of both solutions
is also presented. At the end there is a detailed dis-
cussion concerning the convergence of the HAM so-
lution, and the influence of the important physical
parameters involved is also studied. For a special
case, a comparison of the present results with exist-
ing work [21] is also presented.

2. Formulation

Let us consider the boundary layer stagnation point
flow of a steady incompressible couple stress fluid
over an exponentially stretching sheet through a
porous medium. The Cartesian coordinates (x, y) are
used such that x is along the surface of the sheet,
while y is taken normal to it. In the presence of the
nanoparticles the boundary layer equations of con-
servation of mass, momentum, heat transfer and con-
centration applicable for dilute solutions of nanoflu-
ids are

ux + vy = 0, (1)

uux + vuy = U∞
dU∞
dx

+ νcuyy −
η0

ρ
uyyyy −

νcφ
∗
p

k0
u, (2)

uTx + vTy = αTyy +
ρ∗c∗p
ρcp

(
DBTyφy +

DT

T∞
T 2

y

)
, (3)

uφx + vφy = DBφyy +
DT

T∞
Tyy, (4)

here (u, v) are the velocity components along the
(x, y) axes, νc is the kinematic viscosity, U∞ is the
free-stream velocity, η0 is the material constant for
the couple stress fluid, ρ is the density, φ∗p is porosity
of porous space, k0 is permeability of porous space,
T is temperature, α is the thermal diffusivity, cp is the
specific heat at constant pressure, ρ∗is the nanopar-
ticle mass density, c∗p is the effective heat of the
nanoparticle material, φ is the nanoparticle volume
friction, DB is the Brownian diffusion coefficient and
DT is the thermophretic diffusion coefficient. The
corresponding boundary conditions for the problem
are
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u = Uw, v = 0, at y = 0,
u→ U∞, as y→ ∞, (5)

uyy = 0, at y = 0, and uy = 0, y→ ∞, (6)

T = Tw (x) , φ = φw (x) at y = 0,
T → T∞, φ→ φ∞, y→ ∞, (7)

where the free-stream velocity U∞, the stretching ve-
locity Uw and the surface temperature Tw are defined
as

U∞ = aex/L, Uw = bex/L, Tw = T∞ + cex/L, (8)

where a, b and c are constants with appropriate di-
mensions while L is the reference length.

3. Solution of the problem

For solution of the problem we take the following
similar similarity transformations [21]

u = aex/L f ′ (η) ,

v = −
(
νca
2L

)1/2
ex/L ( f (η) + η f ′ (η)) ,

(9)

θ =
T − T∞
Tw − T∞

, ψ =
φ − φ∞
φw − φ∞

, (10)

η =

(
a

2νcL

)1/2

ex/2Ly. (11)

With the help of transformations in Eqs. (9) to (11),
Eq. (1) is identically satisfied while Eqs. (2) to (4)
take the form

λ f (5) − f ′′′ − f f ′′ + 2 f ′2 − 2 + kp f ′ = 0, (12)

θ′′ + Pr
(
f θ′ − 2 f ′θ

)
+ Nbθ

′ψ′ + NTθ
′2 = 0, (13)

ψ′′ + Pr Le
(
fψ′ − 2 f ′ψ

)
+

NT

Nb
θ′′ = 0, (14)

where λ = η0U∞/2µνcL is the couple stress pa-
rameter, kp = 2νcLφ∗p/U∞k0 is the porosity pa-
rameter, Pr = νc/α is the Prandtl number, Nb =

(φw − φ∞) DB ρ
∗c∗p/αρcp is the Brownian number,

NT = (Tw − T∞) DT ρ
∗c∗p/αρcpT∞ is the ther-

mophoresis number and Le = α/DB is the Lewis
number. The boundary conditions in nondimensional
form are

f (0) = 0, f ′ (0) = ε, f ′′′ (0) = 0, (15)

f ′ → 1, f ′′ → 0, as η→ ∞, (16)

θ(0) = 1, ψ(0) = 1, θ → 0, ψ→ 0 as η→ ∞,
(17)

where ε = b/a is the stretching ratio. To solve the
problem with the help of homotopy analysis method
(HAM), the initial guess chosen and the correspond-
ing auxiliary linear operators are [22–26]

f0 = (ε − 1) + (ε − 1)
(
η2

6 − 1
)

e−η + η,

θ0 = e−η, ψ0 = e−η,
(18)

L f =
d5

dη5 + 3
d4

dη4 + 3
d3

dη3 +
d2

dη2 , (19)

Lθ =
d2

dη2 +
d
dη
, Lψ =

d2

dη2 +
d
dη
. (20)

The 0th-order deformation equations are

(1 − q) L f

[
f̂ (η; q) − f0 (η)

]
= qH f~1N f

[
f̂ (η; q)

]
,

(21)

(1 − q) Lθ
[
θ̂ (η; q) − θ0 (η)

]
= qHθ~2Nθ

[
θ̂ (η; q)

]
,

(22)

(1 − q) LΨ

[
Ψ̂ (η; q) − Ψ0 (η)

]
= qHΨ~3NΨ

[
Ψ̂ (η; q)

]
(23)

Where q ∈ [0, 1] is the embedding parameter, ~1, ~2,
~3 are the auxiliary parameter that play an imperative
rule for convergence of the HAM solution and H f ,
Hθ, HΨ are the auxiliary functions.
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N f

[
f̂ (η; p)

]
= λ f̂ v− f̂ ′− f̂ f̂ ′′+ f̂ ′2−2+kp f̂ ′, (24)

Nθ

[
θ̂ (η; q)

]
= θ̂′′ + Pr

(
f̂ θ̂′ − 2 f̂ ′θ̂

)
+ Nbθ̂

′Ψ̂′ + Ntθ̂
′2,

(25)

NΨ

[
Ψ̂ (η; q)

]
= Ψ̂′′ + Le Pr

(
f̂ Ψ̂′ − 2 f̂ ′Ψ̂

)
+

Nt

Nb
θ̂′′.

(26)
Further details of the HAM solution are presented

in the results and discussion section. The impor-
tant physical quantities heat flux at the surface of the
sheet qw, the local Nusselt numbers Nu and the Sher-
wood number S h associated with the present prob-
lem are

qw = −k ∂T
∂y |y=0, Nux = −

√
Rexθ

′ (0) ,
S h = −

√
Rexψ

′ (0) ,
(27)

where Rex = U∞x2/2νL.

4. Results and discussion

The problem of boundary layer stagnation flow and
heat transfer of a couple stress nanofluid flowing over
an exponentially stretching sheet through a porous
medium is solved analytically using the homotopy
analysis method (HAM). The reliability and conver-
gence of HAM solutions are examined by comput-
ing ~-curves for nondimensional velocity, tempera-
ture and nanoparticle profiles f ′, θ and ψ.
The figures are computed for the 15th order of HAM
approximations. Further, the homotopy padé approx-
imation is also applied to confirm the convergence
of the solutions, while for the validity of our solu-
tions, a comparison of the HAM solutions is tabu-
lated with the numerical solutions obtained through
the Runge-Kutta-Fehlberg method. Moreover, a spe-
cial case of the present work is also compared with
the available work [21]. Figs. 1 to 3 are planted to
observe the convergence regions of the involved aux-
iliary parameters ~1, ~2 and ~3 for nondimensional
velocity, temperature and nanoparticle profiles and

Figure 1: ~- curves for f ′ for different values of λ and kp plotted
at 15th-order of approximation

Figure 2: ~- curves for temperature profile θ for different values
of Nb and Pr, plotted at 15th-order of approximation

for different combinations of the other involved pa-
rameters. Fig. 1 is sketched for the convergence re-
gions of the velocity profile for different combina-
tions of couple stress parameter λ, porosity param-
eter kp when stretching parameter ε = 0.25. It is
noticed that an increase in both λ and kp decreases
the acceptable convergence region for the auxiliary
parameter ~1. From Fig. 1 the convergence region
for the velocity profile with λ = 1.5 and kp = 0.5
is −1.1 ≤ ~1 ≤ −0.3. Fig. 2 contains the ~-curves
plotted against the temperature gradient for differ-
ent Prandtl numbers Pr and Nb, while Fig. 3 gives
the ~-curves for the nanoparticle profile for differ-
ent values of Pr and Le. From Figs. 2 and 3 increase
in Pr, Nb and Le decreases the convergence region.
From Fig. 3 when Le = 0.5 and Pr = 5, the accept-
able convergence region for the auxiliary parameter
is −1.2 ≤ ~3 ≤ −0.2.
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Table 1: Padé table showing the convergence of velocity, temperature and nanoparticle profiles for ~1 = ~2 = ~3 = −1, Pr = 0.72,
λ = 1, kp = 0, Nb = 1, NT = 1, Le = 1

Order of App. f ′′ (0) θ′(0) ψ′ (0) Order of App. f ′′ (0) θ′ (0) ψ′ (0)

[1/1] 0.4883 -0.7601 -1.1705 [10/10] 0.4579 -0.7434 -1.1297
[2/2] 0.4814 -0.7449 -1.1274 [11/11] 0.4579 -0.7434 -1.1297
[4/4] 0.4611 -0.7438 -1.1282 [13/13] 0.4578 -0.7433 -1.1298
[5/5] 0.4591 -0.7436 -1.1288 [15/15] 0.4578 -0.7433 -1.1298
[7/7] 0.4582 -0.7435 -1.1294 [18/18] 0.4578 -0.7433 -1.1299
[8/8] 0.4580 -0.7434 -1.1295 [20/20] 0..4578 -0.7433 -1.1299

Table 2: Comparison of numerical and HAM solutions for the boundary derivatives f ′′

− f ′ (0)

HAM Fehlberg HAM Fehlberg HAM Fehlberg HAM Fehlberg

λ\kp 0 0.5 1 2

0.5 1.2161 1.2161 1.3640 1.3640 1.4977 1.4977 1.7280 1.7280
1.0 1.0622 1.0622 1.1909 1.1909 1.3070 1.3070 1.5061 1.5061
1.5 0.9771 0.9771 1.0953 1.0953 1.2019 1.2019 1.3841 1.3841
2.0 0.9194 0.9194 1.0304 1.0304 1.1306 1.1306 1.3017 1.3017
5.0 0.7513 0.7513 0.8418 0.8418 0.9235 0.9235 1.0631 1.0631

Figure 3: ~- curves for concentration profile ψ for different val-
ues of Le and Pr, plotted at 15th-order of approximation

Tables 1 and 2 are presented to confirm the conver-
gence of the obtained HAM solutions. Table 1 con-
tains the homotopy padé approximation values for
velocity, temperature and nanoparticle profiles for
certain values of the involved parameters.
The padé approximates are calculated up to [20/20]
approximates and the obtained values guarantee the
convergence of the HAM solutions. In Table 1 padé

approximations for the velocity profile calculated are
for stretching ratio ε = 0.5, while padé accelerators
for temperature and nanoparticle profiles are com-
puted for stretching ratio ε = 1. It is also notice-
able that convergence for velocity and temperature
profiles is achieved far earlier than convergence for
the nanoparticle profile. Tables 2, 3 show a com-
parison of the HAM and numerical solutions of the
nondimensional profiles computed at the surface of
the sheet. From these results both the solutions are in
good agreement. Table 4 is arranged to give a com-
parison of the present results with the available work
of Nadeem et al. [21]. From Table 4 it is obvious that
the obtained values are in good agreement.

The behavior of velocity, temperature and nanopar-
ticle profiles for different values of the involved pa-
rameters are presented in Figs. 4 to 13. Fig. 4 refers
to the influence of couple stress parameter η over ve-
locity profile f ′ for different values of porosity pa-
rameter kp, when the stretching ratio ε = 2. From
Fig. 4 it is clear that the velocity profile displays dual
behavior with respect to couple stress parameter λ,
namely, near the surface of the sheet the velocity
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Table 3: Comparison of numerical and HAM solutions for the boundary derivatives θ′ and ψ′ when λ = 1, ε = 2, Le = 1, Nb = 1,
NT = 0.5

HAM Fehlberg HAM Fehlberg HAM Fehlberg

Pr\kp 0 0.5 1.5

0.7 -1.1462 -1.1462 -1.1442 -1.1442 -1.1404 -1.1404
θ′ (0) 2.0 -1.9541 -1.9541 -1.9528 -1.9528 -1.9506 -1.9506

7.0 -3.6688 -3.6688 -3.6681 -3.6681 -3.6668 -3.6668
10 -4.3870 -4.3870 -4.3864 -4.3864 -4.3853 -4.3853

0.7 -1.6285 -1.6285 -1.6170 -1.6170 -1.5955 -1.5955
ψ′ (0) 2.0 -2.8274 -2.8274 -2.8197 -2.8197 -2.8057 -2.8057

7.0 -5.3600 -5.3600 -5.3550 -5.3550 -5.3474 -5.3474
10 -6.4179 -6.4179 -6.4141 -6.4141 -6.4072 -6.4072

Table 4: Comparison of present results with the results in [21]

θ′ (0)

[21] Present [21] Present [21] Present

ε\Pr 0.72 1.0 10.0

0.5 1.1663 1.1663 1.3475 1.3475 3.9196 3.9196
1.0 1.3605 1.3605 1.5960 1.5960 5.0597 5.0597
2.0 1.7040 1.7040 2.0311 2.0311 6.9145 6.9145
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Figure 4: Influence of λ over f ′ for different kp

Figure 5: Influence of kp over f ′ for different ε

profile increases as λ rises, while the velocity profile
changes its behavior after a certain interval and then
decreases as λ rises. The dual behavior is due to the
fact that near the surface of the sheet, where the vis-
cosity effects are dominant increase in couple stress λ
parameter corresponds to lower viscosity and hence
higher velocity profile, near the surface. In the far
field region, where the viscosity effects are negligi-
ble, increase in couple stress parameter λ decreases
the velocity profile due to its dependence upon the
coupe stress viscosity η0 which acts as a retarding
agent and makes the fluid denser that results in a de-

Figure 6: Influence of λ over f ′′ for different kp

Figure 7: Influence of kp over f ′′ for different ε

crease in the velocity profile. In Fig. 4 the behavior
of the velocity profile is sketched when the fluid is
flowing without a porous medium

(
kp = 0

)
and fluid

through a porous medium with porosity parameter
kp = 1. It is also noted from Fig. 4 that the turning
points for the velocity profile for different kp lie al-
most at the same η, while the convergence rate for the
velocity profile is much quicker for smaller kp. Fig. 5
reflects the influence of porosity parameter kp plotted
for different values of stretching ratio ε, when couple
stress parameter λ = 1. From Fig. 5 it is noted that
the velocity profile near the sheet surface decreases
with increases in porosity parameter kp, while in the
far field region the velocity profile changes its behav-
ior and increases as kp rises. The convergence rate
for the velocity profile with ε = 0.5, 1.5 is almost
the same. Figs. 6 and 7 gives the pattern followed
by the velocity gradient for different combinations
of the involved parameters that guarantees the satis-
faction of the boundary conditions for the velocity
gradient f ′′ associated with the couple stress fluid
model. Fig. 6 gives the behavior of velocity gradi-
ent f ′′ for different values of couple stress parameter
λ for fluid flowing through a porous medium with
porosity parameter kp = 0, 1. It is observed from
Fig. 6 that near the boundary of the sheet velocity
gradient f ′′ decreases with increase in λ while in the
far field region, increase in λ increases the velocity
gradient. It is also evident from Fig. 6 that increase
in porosity parameter kp increases the deviation of
velocity gradient from the mean position.

Fig. 7 is plotted to observe the behavior of porosity
parameter kp for couple stress fluids with λ = 1, com-
puted for the flat plate case (ε = 0), and stretching
sheet problem with stretching ratio ε = 2. The dual
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Figure 8: Influence of kp over θ for different Pr

Figure 9: Influence of Nb over θ for different NT

behavior is evident in the sketch. From Fig. 7 it is
predicted that near the boundary of the sheet the ve-
locity gradient decreases with increase in kp, while in
the far field area the velocity gradient increases with
increase as kp rises. Fig. 8 inculcates the influence of
porosity parameter kp over temperature profile θ for
different values of Prandtl numbers Pr and for spec-
ified values of the other parameters. From Fig. 8 it is
depicted that the influence of kp over θ is opposite to
Pr in that as Pr rises the temperature profile θ and the
thermal boundary layer thickness decreases, whereas
as porosity parameter kp rises, the temperature pro-
file increases.
Fig. 9 describes the influence of Brownian number
Nb over the temperature profile computed for differ-
ent values of the thermophoresis number NT . From
Fig. 9 it is observed that increases in both Brown-
ian number Nb and thermophoresis number NT re-
sult in the temperature profile θ increasing. This ob-
servation is consistent with the fact that nanoparti-
cles have high thermal conductivity and so a higher

Figure 10: Influence of λ over θ for different ε

Figure 11: Influence of Le over ψ for different Pr

heat transfer rate. Fig. 10 shows the influence of
couple stress parameter λ over temperature profile
θ for shrinking sheet with ε = −0.25 and stretch-
ing sheet with ε = 0.25, 1.5 for specified values of
the other involved parameters. From Fig. 10 it is
clear that an increase in ε decreases the temperature
profile θ and the thermal boundary layer thickness,
while an increase in λ increases the temperature pro-
file θ. Fig. 11 indicates the behavior of the nanopar-
ticle profile for different values of the Lewis num-
bers Le computed for different Prandtl numbers Pr.

Figure 12: Influence of Pr over ψ for different kp
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Figure 13: Influence of Nb over ψ for different NT

Figure 14: Behavior of streamlines for the velocity profile
f (x, y)

From Fig. 11 it is predictable that with an increase in
both Le and Pr the nanoparticle profile and the nano
boundary layer thickness decrease. Fig. 12 gives the
influence of porosity parameter kp over the nanopar-
ticle profile calculated for different values of Prandtl
number Pr. From Fig. 12 it is clear that an increase
in kp increases the nanoparticle profile. Fig. 13 is
prepared to analyze the behavior of thermophore-
sis number NT over the nondimensional nanoparti-
cle profile ψ for different values of the Brownian
number Nb. The sketch indicates that an increase in
thermophoresis number NT increases the nanoparti-
cle profile ψ.
The streamline pattern associated with the velocity
profile f in the (x, y) plane is shown in Fig. 14 for
couple stress parameter λ = 1. The decaying pattern
in streamlines is observable from the sketch. Fig. 15
shows the behavior of Nusselt numbers graphed for
different porosity parameters kp and local Reynolds
numbers Rex plotted against Prandtl numbers Pr.
From Fig. 15 it is observed that with an increase in Pr

Figure 15: Influence of Rex over Nusselt numbers Nu against
Pr for different kp

and Rex local Nusselt numbers increases, while local
Nusselt numbers decreases with respect to porosity
parameter kp. Table 5 contains values for bound-
ary derivatives for nondimensional temperature pro-
file θ at the surface of the sheet which corresponds to
the influence of heat flux at the surface of the sheet
for different values of porosity parameter kp, Prandtl
numbers Pr and Brownian number Nb. From Table 5
it is noted that with an increase in Prandtl numbers
Pr, heat flux at the surface increases, whereas with
an increase in kp and Nb, heat flux at the surface de-
creases. Table 6 refers to the behavior of Sherwood
number S h for different combinations of porosity pa-
rameter kp, Prandtl numbers Pr and Lewis numbers
Le that correspond to the mass transfer rate at the sur-
face of the sheet. From Table 6 it is noticed that with
an increase in both Pr and Le Sherwood numbers in-
creases.
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