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NUMERICAL SIMULATION OF HEAT TRANSFER 
IN THE SINGLE HEAT STORAGE ELEMENT 

WITH PHASE CHANGE MATERIAL 

The paper presents a short description of a numerical simulation for the transient heat transfer 
in a single heat storage element with phase change material PCM (Stefan problem - melting 
and solidification phenomena). Enthalpy method - a finite difference numerical discretization 
and explicit temporal discretization scheme - was chosen for the transient 3-D model. The 
results of numerical calculation of 3-D temperature fields for heating a single PCM vessel are 
presented in the graphic form. 

NOMENCLATURE 

с — specific heat 
L — latent heat 
i —enthalpy 
Τ — temperature 
τ — time 
r — radial coordinate 
ζ — axial coordinate 
λ — thermal conductivity 
ρ — density 
Q - heat flux 

α — the heat transfer coefficient 

INTRODUCTION Phase change heat transfer problems occur in various technological, industrial 
and geophysical processes, such as: TES-PCM Thermal Energy Storage in 



Phase Change Material, melting of ice, freezing of water, metal casting, weld-
ing, coating and purification of metals, crystal growth from melts and solu-
tions, drying of food, nuclear reactor safety etc. 

Problems of phase change heat transfer are of great practical importance 
(e.g. designing of energy storage units, including waste and solar energy, cool-
ing of electronical devices, improving of indoor thermal comfort) as well as 
importance for basic knowledge, especially when processes for radically chang-
ing Prandtl's values are considered. 

The main purpose of computer simulation of physical processes which take 
place in thermal storage systems is to obtain characteristics of such systems 
very quickly and with low costs. Numerical simulation of charging and dis-
charging processes of thermal storage system is based on solving an energy 
equation (with proper boundary and initial conditions) for given geometry of 
the whole system and individual elements containing phase changing material. 

Stefan problem is highly nonlinear due to temperature dependence of ther-
mal properties of PCM. This heat transfer problem is being solved using entha-
lpy technique in an explicit finite difference form. 

Some special numerical procedures for solving heat transfer problem men-
tioned above were developed. They give the possibility to solve this problem in 
either twodimensional (e.g. cylinder) or much more complicated geometries 
(3-D) with different boundary conditions. Also a computer program for estima-
tion performance characteristics of thermal storage system was developed. The 
system under consideration consists of vertical tubes with PCM and the air is 
considered as heat transfer fluid [1]. 

It should be stressed that in many papers published so far constant thermo-
physical parameters for both the liquid and the solid phase are considered. 
In case of significant temperature changes this procedure is not appropriate 
(e.g. thermal conductivity of liquid can be about 50% thermal conductivity of 
solid). Therefore, in order to obtain a correct numerical simulation of phase 
change processes it is essential to know changes of enthalpy and specific heat 
with temperature for both phases [3,4]. 

1. MATHEMATICAL FORMULATION 

To determine unsteady state temperature fields in a vertical tube with PCM, it 
is necessary to solve heat balance equation (for cylindrical 3-D geometry) that 
describes the heat transfer during phase change without free convection in 
a melted region: 

p M D = divA(r)gradr (1) 
dř 



Initial condition: 
Τ(Γ,ζ,φ,τ) = T0 for τ = 0 

Boundary conditions (between the storage tube and air flow): 
- for cylindrical surface: 

dT 
- λ 

dr r =R„ 

where: a r — the heat transfer coefficient for the cylindrical surface, 
T, — air temperature; 

for frontal surface: , ВТ 

dz н 
Z~~2 

where: a h — the heat transfer coefficient for the frontal surface. 

2. NUMERICAL METHOD 

From several ways of solving problem presented above in matematical formu-
lations, enthalpy method — a finite difference numerical discretization and ex-
plicit temporal discretization scheme — was chosen. The processes of phase 
change (solidification and melting) are nonlinear in the mathematical sense due 
to a moving of a solid/liquid interface. The solution of this problem is much 
more difficult when thermal properties of PCM ( λ , cp) are temperature depen-
dent and when the boundary conditions apply to convection. 

The first step in the computional process is to subdivide an investigated 
tube into a definite number of small balance elements. The differential grid 
consists of (NI-NJ-NK) nodal points — where N1 is a number of nodal points 
along a radius of the tube, NJ is a number of nodal points along ζ coordinate 
and NK is a number of nodal points along perimeter. The nodal point of a dif-
ferential grid is located inside the balance element. The balance element has 
inside diameter Rk, outside diameter Rt, height Δ Ζ and angle Δ φ . The I and 
J and К indicate positions of balance elements (nodal points) in a differential 
grid. Fig. 1 shows the shape of the balance element and a part of the differen-
tial grid: The temperature in particular nodal points of a grid (average tempera-
ture in balance elements) at time τ +1 is obtained from a balance of heat 
fluxes at the boundary : 

= Σ (Qjí + QBJ) 



, di / r r , i i where: — = с (Γ) , 
d t ρ Δτ 

Ο.. = — (Τ. - ΤΑ for internal elements, Jt Rj.A 1 l } 

QBj. = UjSj^Tl - Τ?} for boundary elements, 

Rji — thermal resistance for internal elements, 
a.j — the heat transfer coefficient on surface of j differential boundary 

element, 
5, — the external surface of / differential element. j J 

In the calculations, the melting or solidifying properties of storage materials 
were taken from measurements, especially characteristics of enthalpy (latent 
heiat) and specific heat vs. temperature. DSC (Differential Scanning Calory-
metry) was used to measure the heat effects [3]. 

3. NUMERICAL RESULTS FOR A SINGLE VERTICAL TUBE 

A list óf considered phase-change materials and some thermodynamic proper-
ties are given in Table 1. 

T a b l e 1 

Material 
Density ρ 

[kg/m3] 
Melting point Tm 

[°C] 
Thermal Conductivity λ 

[W/(m-K)l 

solid liquid 

wax - PPW-20 850 56 0,25 0,15 

wax - REW-II 800 70 0,2 0,2 

In the numerical charge test a vertical tube of diameter 0,04 m and height 
0,4 m, filled with PCM (wax PPW-20 or REW-Π) was considered. 



Calculations were carried out for following initial and boundary conditions: 
• wax PPW-20 

— initial temperature T0 = 30°C, air temperature Ta = 70°C, heat transfer 
coefficient on the upper and lower surface a. = 5 W/(m2-K) and side 
surface a r = 54-25 W/(m2-K); 

. wax REW-II 
- initial temperature TQ = 30°C, air temperature Tm = 90°C, heat transfer 

coefficient on the upper and lower surface a h = 5 W/(m2-K) and side 
surface a r = 10ч-20 W/(m2-K). 

time I hi 

Fig. 2. The 3-D graph presenting temperature field as a function of charge time and radius 
coordinate for PPW-20 wax (heat transfer coefficient for side surface a r = 20 W/(m2-K)) 

•is 
radius [-] 

Fig. 3. The 3-D graph presenting temperature field as a function of charge time and radius 
coordinate for REW-II wax (heat transfer coefficient for side surface a r = 20 W/(m2-K)) 



Figures 2 and 3 show 3-D temperature field as a function of charge time and 
radius coordinate for two waxes: PPW-20 and REW-II. 

Results of the numerical simulation of charging single element show 
(Fig. 4), among others, that there are rather high temperature gradients in the 
PCM up to the time when material is completely melted. It is a result of rather 
small thermal conductivity of this materials. 
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Fig. 4. The temperature distribution inside the cylindrical element with (a) PPW-20 and 
(b) REW-II along the radius. Heat transfer coefficients for side surface a r = 20 W/(m2-K) 
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Fig. 5. The temperature distribution inside the cylindrical element (in the middle h = 0,2) with 
PPW-20 for different heat transfer coefficients for side surface a r and 3 points (a) symmetry 
axis r = 0, (b) in the middle of radius r/r. = 0,5, (c) surface of the boundary element rf r = 1 
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Fig. 6. The temperature distribution inside the cylindrical element (in the middle h = 0,2) with 
REW-II for different heat transfer coefficients for lateral surface a r and 3 points (a) symmetry 

axis r = 0, (b) in the middle of radius r/rz = 0,5, (c) boundary element r(rz = 1 



Figures 5 and 6 show the temperature-time history inside the cylindrical ele-
ment with PPW-20 and REW-Π for different heat transfer coefficients and 3 
different points. It is shown that for high heat transfer coefficients temperature 
gradients inside the storage element are not so big. It also can be noticed that 
for very small heat transfer coefficients loading time is too long from practical 
point of view. Additionally, when the heat transfer coefficient is high enough, 
the loading time is almost constant. In that case it is not necessary to increase 
this value. 
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Fig. 7. Storage energy vs. charging time for cylindrical element with (a) PPW-20, (b) REW-II 
for two different heat transfer coefficients for side surface a . 

Figure 7 shows stored energy during charging time for the cylindrical ele-
ment with two waxes. As it is shown amount of stored energy approaches the 
maximum energy Qmax which is expressed: 

О = pVAi ^max * max 



where: ρ — wax's density, 
V — volume of the storage element, 
Δ i — the maximum change of enthalpy. 
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Fig. 8. Dimensionless storage energy ( Q I Q ^ ) vs. charging time for cylindrical element with 
PPW-20 and REW-II for two different heat transfer coefficients for the side surface α 

Figure 8 shows dimensionless stored energy ( Q I Q ^ ) vs. charging time 
for cylindrical element with PPW-20 and REW-II for two different heat trans-
fer coefficients of lateral surface a r . It can be said that the storage element can 
be loaded very fast (in 2 hours) or very slowly (in 4 hours). It depends on 
boundary conditions — heat transfer coefficients. For both waxes charging time 
is very similar. Waxes can be used in many applications, especially in solar 
heat storage systems, because they work in the temperature range 25—150°C, 
are very stable and have a good performance. One of their disadvantages, low 
thermal conductivity, can be improved by embedding a metal matrix structure 
in the PCM [5]. 

CONCLUSION 

In this paper some aspects of thermal energy storage in a vertical, cylindrical 
element are discussed. The theoretical model of the diffusion phase change 
(without free convection in a melted region) has been analyzed numerically. 

In order to determine the main parameters of TES system (such as its di-
mensions, mass of PCM, flow rate of heat transfer fluid and so on), it is neces-
sary to use a computer program for determining the temperature fields of PCM 
in unsteady state of charging and discharging thermal energy storage in the 
cylindrical element. It was shown that waxes have very good thermal properties 



for TES. In very short time the element with a wax can be completely charged. 
It is necessary to mention that these results have been checked by comparison 
with experimental results [4]. A good agreement has been achieved. Numerical 
simulation of 2-D and 3-D temperature field is a very powerful and useful tool 
for prediction of behavior of a single PCM storage unit and subsequently can 
be used as a tool for designing the storage system. It is useful to investigate 
waxes with different melting points (difference between the highest and the 
lowest melting point can be about 20°C) in order to use them in thermal stor-
age units with wide range of the operating temperature. The energetic efficien-
cy of such systems can be improved. 

This work was supported by a KBN Grant nr PB 724/S6/92/02 (9 9350 91 02). 
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SYMULACJA NUMERYCZNA PROCESÓW PRZEWODZENIA CIEPŁA 
W POJEDYNCZYM ELEMENCIE MAGAZYNUJĄCYM CIEPŁO W MATERIAŁACH 

ULEGAJĄCYCH PRZEMIANOM FAZOWYM 

S t r e s z c z e n i e 

W artykule zaprezentowano krótki opis symulacji numerycznej modelu nieustalonego prze-
wodzenia ciepła w materiale ulegającym przemianie fazowej (PCM), umieszczonym w pojedyn-
czym elemencie magazynującym ciepło (problem Stefana — zjawisko topnienia i solidifikacji). 
Wybrano metodę entalpową - numeryczna dyskretyzacja różnicami skończonymi i schemat 
jawny kroczenia w czasie — do rozwiązania 3-D przewodzenia z przemianą fazową. Wyniki 
obliczeń numerycznych trójwymiarowego pola temperatury przedstawiono dla grzanego mate-
riału (PCM) w pojedynczym cylindrze. 



ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ТЕПЛОПРОВОДНОСТИ 
В ОТДЕЛЬНОМ ЭЛЕМЕНТЕ СОБИРАЮЩЕМ ТЕПЛО В МАТЕРИАЛАХ 

ПОДВЕРГАЮЩИХСЯ ФАЗОВЫМ ПРЕВРАЩЕНИЯМ 

К р а т к о е с о д е р ж а н и е 

В работе представлена численная модель нестационарной теплопроводности 
с фазовым превращением материала (условие Стефана — явление плавления и за-
твердевания). 

Объектом анализа является вальцовый элемент системы аккумулирующей тепло, 
использующей тепло фазового перехода. 

Эта трехмерная задача теплопроводности была решена с помощью метода коне-
чных расностей и баланса энергии. Представлены результаты численных расчетов 
нестационарного поля температуры в исследованном элементе. 


