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Abstract

Hydrogen, as a clean and renewable energy carrier, has attracted significant interest due to its potential to reduce
greenhouse gas emissions when used in internal combustion engines and fuel cells. Research into dual-fuel systems,
particularly in blends of conventional fuels with renewable alternatives, aims to address challenges related to pollutant
emissions, and adaptability of existing engine technologies. This paper presents research on the Honda NHX 110 internal
combustion engine (ICE), powered by dual fuels. The engine was fueled using the following mixtures of fuels: RON95 with
methanol (M85), RON95 with ethanol (E85), M85 with hydrogen, and E85 with hydrogen. Experimental research was
performed at different ignition advance angle (IAA) values. The effects of IAA changes on indicated work, mechanical power,
torque, electrical power, and effective and mean effective loop pressure generated by the ICE engine are discussed. Finally,
conclusions are drawn about the influence of IAA and hydrogen addition on nitrogen oxides and hydrocarbon emissions.
These results highlight the potential of hydrogen as a transitional fuel while emphasizing the need for advanced strategies
such as exhaust gas recirculation (EGR) and variable valve timing (VVT) to optimize dual-fuel ICE systems.
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Introduction

The perspective of fossil fuel depletion offers a
new view on the functioning of the European
and worldwide energy markets [1]in the context
of developing and accepting distributed energy
generation sources [2].

A notable example of significant change is the
energy and climate package adopted by

European Union member states. This package
sets targets for 2030- and 2050-time
perspectives. The main goals in the 2030 horizon
are to boost energy efficiency to 27%, the share
of renewable energy sources in the energy
market to 27%, and to achieve a 40% reduction
in CO2 emission [3], relative to 1990 levels.

In Poland, the hydrogen economy could gain
momentum, driven by the adoption of the
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national Hydrogen Strategy, which aims to
integrate hydrogen into energy, industry, and
transportation sectors by 2030 [4]. This aligns
with global trends promoting hydrogen as a key
component of decarbonization strategies and
highlights the importance of research into dual-
fuel systems as a transitional solution [5].

The climate package [3] is an impulse for new
technology development, including the
technologies of distributed energy generation
[6], i.e., solid oxide fuel cells (SOFC) [7], molten
carbonate fuel cell (MCFC) [8], proton-exchange
membrane fuel cells (PEM) [9], Stirling engines
[9], microturbines [6], organic Rankine cycles [1],
and many others [10] in sustainable
development. Among the mentioned distributed
generation devices [1] ones that produce energy
from alternative fuels [8,11] (i.e., methane [12],
biogas [13], liquefied natural gas (LNG) [14],
compressed natural gas (CNG)[15], methanol [16],
dimethyl ether [17], ethanol [8], butanol [16] and
other bio-derivative fuels[18], as well as capable
of being fueled by solar fuels, such as hydrogen
[19] and a mixture of hydrogen with other
alternative fuels [20], i.e., hydrogen-enriched
natural gas [21], hydrogen-enriched LPG [22],
hydrogen-enriched WCO biodiesel [23]) can be
distinguished, such as gas engines [24]. The
meager power output of internal combustion
engines (ICE) has become important [25].
Alternative fuels can fuel such engines [26] to
generate electricity in distributed energy
generation systems [27]. Much attention is given
to hybrid prosumer micro-installations, which
can cooperate with energy storage units and
microgeneration systems [28]. Such micro-
generation systems may include external
combustion engines (ECE) [1], which can use
multiple substances as fuel [29], including
alternative fuels [30] and solar fuels such as
hydrogen [31].

This study investigates the operation of a single-
cylinder, 4-stroke ICE fueled by mixtures such as
methanol and RON95 (15% methanol and 85%
RONO95 by volume, known as M85), RON95 with
ethanol (15% of 99,99% pure ethanol and 85%
RON95 by volume, known as E85), M85 with

hydrogen (20% hydrogen and 80% M85 by
volume), and E85 with hydrogen (20% hydrogen
and 80% E85 by volume).

The research presented in this article is part of
widespread research [9,11,15,16] conducted for
various combustion engine rotational speeds
and loads. Results for engine rotational speed
n=4500rpm, A=1, are measured at fully open
throttle.

The primary objective was to evaluate the
impact of a 20% volumetric hydrogen addition
to M85 and E85 fuels on effective operating
parameters, such as indicated work, mechanical
power, torque, mean effective indicated
pressure (MEIP) inside the cylinder, and
electrical power of the HONDA NHX 110 engine.
Additionally, the study aimed to assess the
impact of hydrogen addition to M85 and E85
fuels on hydrocarbon and nitrogen oxide
emissions.

The article is structured as follows: Section 2
describes the test stand, Section 3 presents the
research results, and Section 4 summarizes the
main conclusions.

Description of the ICE test stand

This section describes the test stand used to
conduct a wide range of experimental research
(a diagram and photograph of the test stand are
shown in Figure 1). It consisted of the following
elements:

e Honda NHX 110 four-stroke ICE (Figure 2),

e Electric machine - motor / generator,

e Programmable controller, ie., Engine
Management Unit (EMU) / Engine Control
Management (ECM) (Figure 3),

e LabVIEW Software for measurement,
diagnostics and control [9,11,15,16].
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Figure 1: The scheme and the photograph of the test
bench inside the Vétsch climatic chamber [16]

The main component of the test stand was a
single-cylinder Honda NHX 4-stroke ICE with a
displacement of 108 CCM power, rated by the
manufacturer at 6.6 kW. The engine was water-
cooled with a three-way catalyst (Figure 2).
Three fuel injectors were used to provide fuel to
the engine. The fiber optic pressure sensor and
absolute rotary encoder acquired indicated
pressure values.

Figure 3: The scheme of the electronic control unit -
ECM [16]

The test stand was equipped with a
dynamometer (Figure 4) [9,11,15,16,32]. Torque
was transferred to the permanent magnet BLDC
motor (which also functioned as a generator).
Electrical power was supplied by means of the
three-phase rectifier bridge, a transistor module
(with  microcontroller [9,11,15,16,32]), the
resistor, the BLDC motor with permanent
magnets, and supply voltage. The electric
generator received the torque from the ICE shaft
with synchronous belt drive. I=1.42 was the gear
ratio between an electric motor and an ICE. A
strain gauge beam measured the torque. A
digital 14-bit absolute single-turn encoder that
was linked to the measurement board in
accordance with SSI standards was used to
measure the crankshaft's rotation angle.
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Figure 4: The scheme of the dynamometer system of
HONDA NHX 110

The test stand featured a custom load generation
system consisting of a permanent magnet BLDC
motor (electric generator) coupled with the ICE
by atoothed belt transmission and a load control
unit for electric current control. A controllable
resistor unit dissipated the generated electric
energy. The detailed parameters of the test-
stand equipment are in Table 1.

Table 1: Technical parameters of test-stand

equipment
Parameter name Unit Value
Maximum voltage of V 400
three-phase bridge
rectifier
Maximum current of A 300
three-phase bridge
rectifier
Supply voltage \Y 30to 70
Speed constant rpm/V 150
RPM limit rpm 10 500
No load currentand A,V 13, (at
voltage 20 V)
Measurement board: kHz  44.9
clock frequency
Measurement board: CA 0.5 (for
measurement 3800rpm)
precision

The load system can control the electric current
flow, thus controlling the generated load
torque. During research, the system was set to
automatically control the amount of current to
ensure a set combustion engine rotational speed
at open throttle.

The test stand allowed the generated load
torque to be acquired using a load cell. This
generated torque was proportional to the
combustion engine torque. Before conducting
the research, the system was calibrated. A
programmable EMU was used to manage the
engine [9,11,15,16,32]. The unit controls the
parameters key to engine operation, such as fuel
dosage and ignition advance angle (IAA). The
primary technical data for the HONDA NHX 110
ICE engine are presented in Table 2.
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Table 2: Technical data of HONDA NHX 110 Table 3: Data of HONDA NHX 110 - tests in a
Parameter name Unit Value Vétsch climatic chamber
Parameter name Unit Value
Maximum power kW 6.6 (at
7500 rpm) Temperature of K 298 £ 3
Torque Nm 9.3 at intake air
6250 rpm) Atmospheric hPa 1009
Swept volume ccm 108 pressure
Air-fuel equivalence - a=1
. . ratio
Compression ratio - 11
Engine rotational rpm 4500
. speed
The diameter of mm 20 pee
the throttle Throttle position - fully
The stroke of the mm 50 open
piston Figure 5 presents the effective indicated
he di ¢ pressure (EIP) graphs achieved during several
The .1ametero mm 50 hundred work cycles for different fuel types:
the piston M85 (Figure 5a), M85+H2 (Figure 5b), E85 (Figure
Demand for air dm3/min 405 (at 5c), and E85+H2 (Figure 5d).
7500 rpm The measurements were carried out from
. IAA=15" to IAA=30" in the case of M85, from
Intake valve deg 25 ABDC IAA=50 to IAA=30" in the case of M85+H2, and
closing from IAA=5" to IAA=35 in the case of E85 and
Intake valve deg 10° BTDC E85+H2. All measurements were performed
opening with 5° increments.
The results presented in Figures 5 a-d) show that
Exhaust valve deg 5 BTDC the pressure increases for all tested fuels with
closing the increase of IAA.
Exhaust valve deg 35° ABDC o .
opening IAA=50 1aa=30 1AA=20
Ea IAA=45 IAA=25 M'Af’s
Injector resistance Q 9-12 (at 256 N
o v4 <
20 C) E — 2000-‘%,
go 1000 __5.:'
Ignition advance deg 14 deg “0 120 240 360 480 o0 720 ° ;}'5:
BTDC (idle) Crankshaft angle [%] &>

(a)

1AA=30
M85+H2

H 1AA=25
Experimental results RN
[ JAA=15 IAA=5 [AA=10
The ICE engine experimental research was 00

performed in a climate chamber under steady
operating conditions. The parameters are shown
in Table 3.

Pressure [MPa
o MO®

o

&
§
120 240 360 480 €00 720 ° o
Crankshaft angle [°] Iy
G

(b)
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il

(d)
Figure 5: The graphs of indicated pressure for (a)
M85, (b) M85+H2, (c) E85, and (d) E85+H2 for several
hundred consecutive cycles, respectively

In Figure 6 a-d), the mean effective indicated
pressure (MEIP) graphs are presented (averaged
for arange between 5° CA to 720° CA) for various
values of IAA for the tested fuels: M85 (Figure
6a), M85+H2 (Figure 6b), E85 (Figure 6c) and
E85+H2 (Figure 6d).

The highest MEIP value of 7.29 MPa was
achieved for M85 at IAA=55" (Figure 6a). The 20%
volumetric addition of hydrogen for M85 and
E85 negatively influences the maximum values
of the MEIP.
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Figure 6: The influence of the IAA on MEIP values of
pressure for tested fuels: (a) M85, (b) M85+H2, (c)
E85, (d) E85+H2

Figure 7 illustrates the results for indicated
work (Figure 7a), torque (Figure 7b), mechanical
power (Figure 7c), and electrical power (Figure
7d) for ICE fueled by M85, M85+H2, E85, and
E85+H2.

The highest value of the indicated work (211.4 J)
(Figure 7a) was obtained for M85 at IAA = 50°,
while the lowest value (190.4 J) for E85+H2 at
IAA = 35°. The maximum value of electric power
(Figure 7d) was obtained at IAA = 20° for E85+H2
- in this case, the electric power value was 3.59
kW, corresponding to a torque value of 11.3Nm.
The lowest value of electric power was obtained
for E85+H2 at IAA = 35",

The highest torque value was achieved when the
engine was powered with M85 fuel (Figure 7b);
at IAA = 25°, the torque value was equal to 12.08
Nm, while the mechanical power was 5.98 kW
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(Figure 7c). Based on the conducted tests, it was
found that the best fuel for further usage is M85
without the addition of hydrogen. For the M85,
the highest values of torque, mechanical power,
electric power, indicated pressure and indicated
work were obtained.
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Figure 7: The graphs of (a) indicated work, (b) engine
torque, (c) mechanical power, (d) electric power for
four-stroke ICE for various IAA values

Figure 8a presents graphs of hydrocarbon HC
emission. Figure 8b presents nitrous oxides Nox
emission. Both figures show results for the ICE
fueled by M85, M85+H2, E85, and E85+H2.

The highest hydrocarbon emission (Figure 8a)
was obtained for E85 at IAA = 20°, equal to 30
ppm. From the analysis of Figure 8b, the
conclusion is that the NOx levels increased with
higher IAA values. The highest NOx emission
level (2693ppm) was measured for E85+H2 at
IAA=35". At the same time, it should be noted
that hydrogen addition has a positive effect -
reduction of HC emissions. A 20% volumetric
addition of hydrogen (E85+H2) reduces the
emission of hydrocarbons when IAA is greater
than 25°. In the case of M85, the highest HC
emission (18 ppm) was measured for IAA=25",
and the highest NOx emission (1610 ppm) was
measured for IAA=60°. It should be emphasized
that the 20% volumetric addition of hydrogen
(M85+H2) positively affects the reduction of HC
emissions (12 ppm for IAA=25").
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Figure 8: The effect of IAA on (a) HC emission and (b)
NOx emission in exhaust gasses of the IEC powered
with tested fuels

Summary

The experimental research demonstrates that
increasing the ignition advance angle (IAA) up to
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20°, while maintaining the engine’s rotational
speed at 4500 rpm, results in an increase in mean
effective indicated pressure (MEIP) inside the
cylinder, indicated work, mechanical power,
torque, and electrical power, for the tested fuels.
Furthermore, the addition of hydrogen to the
considered fuels (M85 and E85):
e reduces hydrocarbon emissions
exhaust system (positive outcome).
e increases NOx emissions (increased NOx
emission) by lowering exhaust gas exhaust
temperature (negative outcome).
It should be emphasized that the addition of
hydrogen limits the possibility of controlling
the ignition timing; as the volume of hydrogen
increases, the IAA change control option
decreases; for pure hydrogen, the maximum IAA
value does not exceed 22.5° (value determined
based on initial tests for A = 1.2).
Based on the conducted tests, it was found that
the best fuel for further usage is M85 without
the addition of hydrogen. For the M85, the
highest values of torque, mechanical power,

in the

electric power, indicated pressure and indicated
work were obtained. The research highlights
that while hydrogen-enhanced fuels offer
environmental benefits in terms of reduced HC
emission, their higher NOx emissions and
moderate impact on engine performance
suggest the need for further optimization of
dual-fuel systems. Specifically, advanced
combustion strategies, such as exhaust gas
recirculation (EGR) or variable valve timing
(VVT), could be explored to balance emissions
and performance.

The authors' next research will focus on
estimating the effective operating parameters
of an ICE driven by alternative fuels using
simulation models. These models could provide
insights into optimizing hydrogen-fueled
engines for broader applications in distributed
energy systems and the hydrogen economy.
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