D:

Journal of Power Technologies )4 (2) (2024) 130 -- 142, Q

Influences of Technological Innovation on Energy
Efficiency under Carbon Constraints

Ruining LI=, Yangguang LI
Xinyang Agriculture and Forestry University, School of Logistics and E-commerce, No.1 North Ring Road,

Pinggiao District, Xinyang, China
& 2018250001@xyafu.edu.cn

Abstract

In this study, first, the influences of technological innovation on energy efficiency were theoretically analyzed. Second,
CO2 emission was used as an unexpected output in the evaluation of total factor energy efficiency. On the basis of the data
of some provinces, cities, and autonomous regions in China from 2011 to 2022, the regional energy under carbon emission
constraints was investigated by constructing an SBM-Undesirable model. This study innovatively divided technological
innovation into three dimensions of innovation environment, innovation investment, and innovation market. The effects
of technological innovation on energy efficiency were evaluated comprehensively by grey relational analysis. Results
show that, in view of energy utilization status, most provinces in China report a low efficiency of energy utilization under
carbon emission constraints, presenting obvious spatial and geographic differences. The provincial administration regions
in the first and second echelons mainly concentrate in East China, while the provincial administrative regions in the third
echelon mainly concentrate in Central, West, and Northeast China. The efficiency of energy utilization declines from East
China to Northeast China to Central China and then to West China. Technological innovation has significant influences on
energy efficiency, and its indexes are highly related to total factor energy efficiency under carbon constraints.

Keywords: technological innovation; energy efficiency; SBM-Undesirable model; grey relational analysis; carbon
constraint

consumption of Earth resources has exceeded
the sustainable supply capacity of the Earth
since 1970s [1]. Therefore, countries in the world
begin to  discuss energy  structural

Introduction

Most countries have entered into the
industrialization process in the past century,

which have brought rapid economic and social
development and a quick increase in population.
However, the global energy consumption has
soared up accordingly, accompanied with
intensifying environmental pollution. Natural
capital refers to renewable and nonrenewable
available natural resources that support human
life. The Living Planet Report of 2016 stated
that with the increase in human pressure, the
reduction speed of natural capital is higher than
the recovery rate. It emphasized that man’s

transformation to control the emission of
greenhouse gases. Many countries and regions
have proposed relevant measures. The World
Energy Development Report of 2021 indicated
that Japan will realize “net zero emission” of
greenhouse gases by 2050. The South Korean
government also proposed the goal of carbon
neutralization before 2050 and determined
renewable energy as a major type of energy
source. The UK has determined clean energy
growth as one of four industrial challenges,
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aiming to increase industrial energy efficiency
by at least 20% by 2030 [2].

After China announced the goals of “carbon
neutrality” and “carbon emission peak” in
September 2020, these two goals have become
an important topic in the energy industry [3]. In
2022, a report on the work of the government
pointed out to “make an overall plan of steady
growth, adjust the structure, promote reform,
accelerate changes in development modes, and
abandon  extensive  development.” The
agreement is to seek high-quality development
by changing development mode, optimizing the
layout of the energy industry, and accelerating

the application of new green energy
technologies [4]. Therefore, the increasing
demands for energy management are an

important part of environmental governance,
and increasing the energy utilization is viewed
as the optimal method with the highest cost
efficiency to decrease the pollution caused by
energy consumption. To increase the efficiency
of energy utilization and decrease energy
consumption intensity, our main goal is to
realize energy saving and emission reduction.
Technological progress and energy structural
adjustment are essential bases [5]. To promote
improvement of energy efficiency and realize
the goal of “carbon emission peak” by 2030 and
“carbon neutrality” by 2050, enterprises and
government shall pay attention to increasing
nonfossil energy utilization and strengthening
technological innovation. This mission is not
only conducive to guiding the development
directions of enterprises but also has
remarkable social significance.

Literature review

Studies on energy efficiency measurement
mainly focus on a single-factor energy
efficilency index. Xie et al. measured energy
efficiency by using pure economic energy index,
physical thermodynamic index, and economic
thermodynamic index as single-factor indexes
[6]. Hou et al. further analyzed energy
efficiency in different regions through the ratio
of gross national product to energy
consumption [7]. These methods have simple

calculations and can analyze and compare the
energy efficiency of multiple regions quickly;
however, they cannot consider the production
process comprehensively, and single energy
factors cannot be output effectively. Moreover,
the influences of other supporting factors are
ignored. Most Chinese scholars begin to use the
new theory of estimation. On the basis of a
previous analysis framework, Thompson et al.
constructed a provincial regional calculation
model by using data envelopment analysis (DEA)
based on gross domestic product (GDP), capital,
labor force, and energy input in provincial
panel data. They displayed generally consistent
results with previous analyses and better
results [8]. Considering unexpected output, as
well as scaled energy correlation factors and
substitution effect under energy correlation,
Liu et al. used the hyperefficiency DEA model
and carried out an empirical study based on the
panel data of 28 provinces in China to evaluate
regional energy efficiency [9]. Martin et al. used
the EBM model to estimate energy efficiency,
involving the environmental pollution of
undesirable output, carried out an empirical
test on the relationship between economic
agglomeration and energy efficiency in the
government intervention background, and
analyzed the influencing and action mechanism
of energy efficiency [10].

Many studies on the influencing factors of
energy efficiency have been reported. In the
study on China’s petroleum industry, Feng et al.
attributed over 50% of the reduction in energy
intensity to changes in the energy industrial
structure [11]. Cheng et al. indicated that
technological progress would increase energy
efficiency, and changes in the driving force of
energy needs in the fields of economic growth,
industrial structure, economic system reform,
and environmental and energy saving policies
should be investigated [12]. Using the data of 20
developing countries, Lin et al. studied the
relationship between foreign direct investment
(FDI) and energy intensity and found that
energy intensity decreased obviously with an
increase in FDL In addition, the improvement of
FDI efficiency is the collaborative outcome of
advanced management skills and modern
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technological factors [13]. Liu et al. studied
large- and medium-sized enterprises in China
and concluded that more than 50% of the
reduction in energy intensity was due to
industrial restructuring [14]. Wang et al
included knowledge stock into the production
function and studied provincial energy
efficlency from the perspective of market
segmentation. They concluded that, in the
energy clustering analysis, Sichuan, Hebei, and
Shanxi were clustered as low-efficiency and
high-input. This conclusion reflected that
energy endowment restricted energy efficiency
and the formation of scaled economy, thus
hindering interindustrial development [15].

Wongsapai et al. suggested building an
environmental DEA model with consideration
to CO2 emission in the industry. According to
their empirical results, the improvement of the
energy efficiency of China’s industrial sectors
was mainly promoted by technological
progress [16]. Lin et al. discussed the
simultaneous realization of regional economic
growth and energy efficiency in Japan and
investigated the relationship between Japan's
manufacturing industry and energy efficiency.
They concluded that energy efficiency was
positively related to productivity.
Agglomeration economy, a driving force of
productivity growth, increased the energy
efficiency of Japan's manufacturing industry.
Furthermore, local economy can increase the
energy efficiency of rural areas effectively

through agglomeration of similar industries [17].

Liu et al. estimated environmental regulation
intensity by establishing comprehensive
evaluation indexes of three industrial wastes
emissions and carried out an empirical test on
the influences of environmental regulation and
total factor energy efficiency through
provincial panel data. They concluded that
environmental regulation promoted
countermeasures of energy efficiency [18]. Li et
al. established total factor energy efficiency
indexes covering environmental pollution and
greenhouse gas, analyzed the influencing
degrees of internal management factors and
external factors, and proposed
countermeasures to improve industrial energy

efficiency [19]. On the basis of 30 enterprises in
Latin America and the Caribbean, Yang et al.
discussed the relations among energy
efficiency, productivity, and export. According
to an empirical analysis, they found that
enterprise size and industrial sector vary in the
relations of energy efficiency with productivity
and export [19].

With respect to the influences of technological
innovation on energy efficiency, the innovation
theory of Joseph  Alois  Schumpeter
demonstrates that innovation plays an
important role in human social and economic
development. After the industrial revolution,
most countries in the world began to replace
manual labors with machines. In this process,
technological innovation can definitely
improve mechanical efficiency. At present,
although extensive opinions exist about the
influences of technological innovation on
energy efficiency, most scholars agree that
technological innovation promotes energy
efficlency. Yang et al. demonstrated that
technological innovation drives green economic
transformation and increases regional energy
and ecological efficiency, with a stronger
positive effect than industrial structure [20]. Shi
et al. found a significantly positive correlation
between technological innovation and energy
ecological efficiency on the national and
regional levels [21]. Wang et al. decomposed
technological progress into scientific and
technological progress index, pure
technological efficiency index, and scaled
efficiency index, analyzed their influences on
energy efficiency through panel data
measurement, and concluded that technological
progress was the major contributor to the
improvement of energy efficiency [22]. Cheng
et al. studied energy ecological efficiency in the
Yellow River region by using the SBM-
Undesirable model and explored the action
mechanism of technological innovation on
energy ecological efficiency [23]. Li et al
demonstrated that technological innovation
played a positive effect on the emission
reduction in industrial SO2 and wastewater.
They recommended paying attention to the
major role of innovation in reducing pollutant
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emissions and increasing energy efficiency [23].
Li et al. carried out the Granger causality test
and a pulse response analysis based on PVAR
model and conducted variance decomposition.
They found that technological innovation could
promote industrial production efficiency to
some extent [24]. Gao et al. believed that
product innovation and  technological
innovation could coordinate with energy

efficiency to promote economic growth further.

On this basis, they established a comprehensive
system coordination model of technological
innovation and energy efficiency. Through a
study of the technological innovation and
energy data of high and new technology
industries in China, they determined a low
degree of coordination between technological
innovation and energy in such industries in
China. They also stated that improving the
coordination between technological innovation
and energy efficiency would be the major task
in the future [25].

To sum up, technological innovation could

promote energy efficiency significantly.
However, previous studies mainly viewed
technological innovation as the mediating

effect between energy efficiency and other
factors and explored the action mechanisms of
relevant influencing factors. Some scholars
have discussed the influences of technological
innovation on energy efficiency from its
internal factors, but deeper discussions are
needed.

Models and data source
SBM-Undesirable model

In the hyperefficiency SBM-Undesirable model,
suppose 7 mutually independent provincial
energy-efficient units exist, and each has m
inputs (xeR"),k desirable outputs (yeR‘), and
one undesirable output (seR’). The matrixes
X =[x,....x,]e R™ , Y:[yl,...,yn]eRkX"

B=[b,...b,]JeR™"  were  designed, where
X>0,Y>0,8>0 . Each provincial unit pursues
minimum input ( X ), maximum desirable output
(Y), and maximum energy efficiency (B). The
possibility set of production in this process is

, and

P={(x,y,b) x> XA,y <Y¥A,b>BA,A20} (1)

where 21eRr" is the weight vector, and 4? 0
represents the constant returns to scale. ). 4=1
shows changing returns to scale. x>XA1
indicates that the actual input is higher than
the optimal input, and y[' Y4 shows that the
actual desirable output is lower than the
optimal desirable output. > BA means that
the actual undesirable output is higher than the
optimal undesirable output. 6 (0<45"<1) was
used to estimate the provincial energy
efficiency of regions with an input-output state
of (%,%0,0,). When 6" =1, the provincial energy

efficiency of such regions is high. s,7,s,,s,~
denote input redundancy, insufficient desirable
output, and excessive undesirable input,
respectively. They provide practice directions
for provincial energy efficiency to further
improve environmental technological
efficiency. From Eq. (2), §* is not influenced by

the data measurement unit. The slack variables
of inputs and outputs decrease monotonously.

& o
I_Z;Si /xio

5" =miné = e - (2)
e (S e S b

st. x,=XA+s ,Ym;  (3)

V,=YA-s5",Vk; (4)

b, =BA+s, VI (5)

A;,20,Vn;s;” 20, Vmys," 20,Vk;s,” 20,V1. (6)

In practical production, energy efficiency is
usually sensitive to several environmental
technological efficiency factors, which cannot
be distinguished owing to the limitations of the
SBM model setting. To address this issue, this
study combined the hyperefficiency DEA and
SBM models and proposed the hyperefficiency
SBM model. On this basis, the hyperefficiency
SBM-Undesirable model could be inferred to
distinguish provinces with different
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environmental technology efficiency. In Eq. (3),
w,,w,",w,~ express the minimum input saving,

minimum desirable output residues, and
minimum undesirable output redundancy,
respectively.
R
5" =mind = L (7)

1 L3 . ! N
FE{ZMANEMMJ

r=1

(8)
(9)

(10)

st x, 0 XA—w~,Vm;

Vo, YA+w ", Vk;
b, BA—w,,VI;
A, 20,Vn;w, >0,Vm;w,” >0,Vk;w,” >20,VI (11)

In the tobit model, the provincial energy
efficiency of all regions was measured higher
than 0 in this study. The limited dependent
variable model (Tobit) was used, and it can be
expressed as follows:

E =B, +BX +¢k¢ eN(O,Uz) (12)

E, :max(O,E[.*) (13)

where £, is the provincial energy efficiency of
region i E is the observation value in the
interval (0,+). X, is a series of characteristics

that influence production
technological efficiency. B is

environmental
a parameter

vector, and &; is the independent random

disturbance term. The marginal effect of
estimation coefficient was further calculated
for the convenience of interpreting the
regression results.

Grey relational analysis

Grey relational analysis is to analyze the
influencing degree of different factors on a
research object by calculating the grey
correlation coefficient among system factors. A
reference sequence of data that reflect system
behavioral characteristics is set, and data that
influence such a reference sequence is called
comparative sequence. The reference sequence

is 6,=[6,(1.6,(2).6,(3)....6,(n)] , and the
comparative sequence is
6,=[6.(1,6.(2).6,(3)....0.(m], where i=1,2,3,...m .

Dimensionless treatment of the reference and
comparative sequences was implemented via a

normalization method (Eq. (15)) or an
initialization method (Eq. (16)).
a1 = # (15)
— O, (k)
0,(k)
0'(k)=-"~=~
(k) o) (16)

The processed data can be expressed as
0 =[6(1,6/(2),6.(3),....6.(m) ], i=1,23,..,m,

Then, the difference sequence between the
reference and comparative sequences was
calculated in accordance with the following
equation:

AO.(1)=16,/()—6,/®)|,1<t<n (17)

The grey relational coefficient (£6,(t)) of the
reference and comparative sequences can be
calculated as

A(min) + pA(max)
A6.(t)+ pA(max)

£6,(t) =

where £ is the resolution ratio, and it usually
has a value from 0 to 1. The smaller the value of
P, the better the resolution is; it is typically set
to 0.5.

Finally, the correlation value could be
calculated. Because the correlation coefficient
results are relatively scattered, the mean of the
correlation coefficient needs to be calculated.
The calculation formula is

r6, =%i§9,.(t) (19)

A higher correlation value indicates a stronger
correlation between the evaluation term and
the reference sequence. Through calculation
and ranking of correlation values, the ranking
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results of different evaluation terms could be
gained.

Selection of indexes and data source

With consideration to the integrity and
availability of data, energy efficiency was
measured and evaluated on the basis of the data
of 30 provinces, cities, and autonomous regions
(hereinafter referred to as provinces) in China
from 2011 to 2022. The Tibet Autonomous
Region, Hong Kong, Macao, and Taiwan were
excluded from the statistics because of the
incomplete data or inconsistent statistical
caliber of indexes.

Energy input was expressed by the total energy
consumption (unit: 10,000 tons of standard
coals) of provinces. The original data of
electricity consumption (TWh) came from China
Energy Statistical Yearbook. No regional
statistics were available for 2022, such that
provincial statistical yearbook data were used.
Capital input was measured by the index of
capital stock (unit: 100 million yuan), and its
statistics used the “perpetual inventory
method™ K, =(0-6)K,,+1,, where K, refers
to the capital stock of phase t, X, is the capital
stock of phase t-1, & is the fixed asset

depreciation rate, and /, denotes the actual

fixed investments of year t. Younger’s setting
was applied in the estimation of interprovincial
physical capital stock in China. It was
subtracted on the basis of that in 2000, and the

capital stocks of provinces in China from 2011
to 2022 were estimated. Specifically, the data of
fixed investments came from China Statistical
Yearbook from 2011 to 2022, and data after 2018
were calculated by percentage. Labor input was
measured by the quantity of employment of
provinces at the end of a year (unit: 10,000
people), and relevant data were from China
Statistical Yearbook from 2011 to 2022. The
desirable output was expressed by the actual
GDP of provinces (unit: 100 million yuan). GDP
was applied to convert nominal GDP from 2011
to 2022 into constant-price GDP in 2000 to keep
consistent statistical caliber with capital stocks.
Relevant data came from China Statistical
Yearbook from 2011 to 2022. The undesirable
output was expressed by the CO2 emissions of
provinces (unit: 100 million tons of carbon
dioxide equivalence). Data were from the
CEADs database and checked by IPCC
department laws. Data in 2020 were gained
through linear interpolation.

Results
Energy efficiency measurement and analysis

Five input-output index data of some provinces
in China from 2011 to 2022 were incorporated
into SBM-Undesirable, and the energy
efficiency values ( p ) of these provinces in these
11 years were calculated using MATLAB
software. The results are shown in Table 1.

Table I: Total factor energy efficiency values of some provinces in China from 2011 to 2022

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | 2021 2022 | Result
Beijing 1.000 | 0.924 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 0.945 | 0.966 | 1.000 | 1.000 | 0.912 | 0.979
Tianjin 0.834 | 0.948 | 0.842 | 0.855 | 0.847 | 0.926 | 0.936 | 0.905 | 0.851 | 0.963 | 0.922 | 0.992 | 0.902
Shanghai 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.966 | 0.946 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992
Chongging 0.447 | 0.522 | 0.582 | 0.561 | 0.417 | 0.519 | 0.438 | 0.545 | 0.437 | 0.463 | 0.413 | 0.535 | 0.490
Hebei 0.416 | 0.425 | 0.555 | 0.511 0.548 | 0.538 | 0.478 | 0.460 | 0.470 | 0.518 | 0.526 | 0.419 | 0.489
Shanxi 0.396 | 0.269 | 0.273 | 0.343 | 0.230 | 0.267 | 0.318 | 0.283 | 0.356 | 0.370 | 0.287 | 0.400 | 0.316
Liaoning 0.564 | 0.612 | 0.564 | 0.679 | 0.672 | 0.512 | 0.603 | 0.685 | 0.554 | 0.656 | 0.673 | 0.647 | 0.618
Jilin 0.621 | 0.667 | 0.621 | 0.534 | 0.507 | 0.552 | 0.594 | 0.611 0.581 | 0.679 | 0.679 | 0.699 | 0.612
Heilongjiang | 0.685 | 0.556 | 0.628 | 0.550 | 0.636 | 0.550 | 0.663 | 0.536 | 0.592 | 0.593 | 0.575 | 0.565 | 0.594
Jiangsu 0.688 | 0.531 | 0.659 | 0.545 | 0.587 | 0.676 | 0.688 | 0.625 | 0.628 | 0.670 | 0.505 | 0.661 | 0.622
Zhejiang 0.673 | 0.661 | 0.619 | 0.633 | 0.664 | 0.611 | 0.678 | 0.577 | 0.521 | 0.623 | 0.645 | 0.639 | 0.629
Anhui 0.654 | 0.687 | 0.650 | 0.514 | 0.509 | 0.567 | 0.551 | 0.524 | 0.685 | 0.672 | 0.655 | 0.656 | 0.610
Fujian 0.679 | 0.546 | 0.531 | 0.526 | 0.577 | 0.551 | 0.684 | 0.527 | 0.531 | 0.629 | 0.582 | 0.691 | 0.588
Jiangxi 0.662 | 0.677 | 0.683 | 0.530 | 0.557 | 0.586 | 0.685 | 0.584 | 0.647 | 0.630 | 0.561 | 0.550 | 0.613
Shandong 0.502 | 0.542 | 0.525 | 0.647 | 0.527 | 0.572 | 0.537 | 0.562 | 0.625 | 0.691 | 0.590 | 0.614 | 0.578
Henan 0.529 | 0.655 | 0.513 | 0.502 | 0.699 | 0.546 | 0.513 | 0.559 | 0.693 | 0.536 | 0.677 | 0.500 | 0.577
Hubei 0.598 | 0.637 | 0.506 | 0.630 | 0.516 | 0.509 | 0.522 | 0.680 | 0.606 | 0.628 | 0.564 | 0.612 | 0.584
Hunan 0.597 | 0.580 | 0.526 | 0.665 | 0.507 | 0.510 | 0.656 | 0.614 | 0.656 | 0.511 0.508 | 0.596 | 0.577
Guangdong 1.000 | 0.932 | 0.840 | 0.824 | 0.893 | 1.000 | 0.920 | 0.937 | 0.887 | 1.000 | 0.815 | 0.961 | 0.917
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Hainan 0.410 | 0.298 | 0.211 0.234 | 0.241 | 0.240 | 0.324 | 0.272 | 0.351 | 0.206 | 0.315 | 0.370 | 0.289
Sichuan 0.460 | 0.360 | 0.441 | 0.393 | 0.348 | 0.405 | 0.421 | 0.384 | 0.399 | 0.388 | 0.435 | 0.401 | 0.403
Guizhou 0.201 | 0.317 | 0.382 | 0.243 | 0.286 | 0.231 | 0.231 | 0.274 | 0.389 | 0.313 | 0.301 | 0.324 | 0.291
Yunnan 0.242 | 0.332 | 0.252 | 0.337 | 0.369 | 0.384 | 0.313 | 0.278 | 0.206 | 0.253 | 0.281 | 0.309 | 0.296
Shaanxi 0.281 | 0.219 | 0.295 | 0.224 | 0.281 | 0.283 | 0.273 | 0.300 | 0.251 | 0.300 | 0.288 | 0.299 | 0.274
Gansu 0.249 | 0.114 | 0.249 | 0.148 | 0.142 | 0.182 | 0.156 | 0.101 | 0.178 | 0.103 | 0.277 | 0.180 | 0.173
Qinghai 0.124 | 0.209 | 0.286 | 0.105 | 0.221 | 0.193 | 0.106 | 0.101 | 0.214 | 0.178 | 0.249 | 0.216 | 0.183
Neimenggu 0.394 | 0.372 | 0.259 | 0.284 | 0.365 | 0.317 | 0.354 | 0.300 | 0.318 | 0.267 | 0.362 | 0.286 | 0.323
Guangxi 0.248 | 0.230 | 0.296 | 0.202 | 0.327 | 0.265 | 0.246 | 0.314 | 0.217 | 0.339 | 0.276 | 0.351 | 0.276
Xizang 0.188 | 0.192 | 0.098 | 0.057 | 0.195 | 0.074 | 0.030 | 0.081 | 0.063 | 0.116 | 0.075 | 0.032 | 0.100
Ningxia 0.163 | 0.002 | 0.017 | 0.189 | 0.025 | 0.180 | 0.090 | 0.183 | 0.195 | 0.119 | 0.110 | 0.057 | 0.111

Xinjiang 0.191 0.271 | 0.210 | 0.215 | 0.236 | 0.284 | 0.147 | 0.245 | 0.263 | 0.279 | 0.162 | 0.164 | 0.222

The energy efficiency level of some provincial
administrative units in China under the SBM-
Undesirable model was divided. The spatial
distributions of energy efficiency levels after
grading in 2011, 2016, and 2022 were plotted
using ArcGIS (Figure. 1-Figure. 3).

[H10.000000 - 0.111000
0111001 - 0.323000
0.323001 - 0.430000
I0.490001 - 0.629000
10.629001 - 0.992000

Figure 3: Spatial distribution of energy efficiency
levelsin 2022

[0.000000 - 0.111000
I 0.111001 - 0.323000

: Comparison of Fig .1 to Fig. 3 indicates that the
mo323001 - 430000 _ ! total factor energy efficiency of China presents
Mo aszn L S obvious spatial distribution characteristics. In
' particular, Shanghai, Beijing, Guangdong, and
Tianjin in East China had been in the first
Figure I: Spatial distribution of energy efficiency echelon from 2011 to 2022. Chongging and
levels in 2011 Sichuan in West China entered into the second
echelon in 2016 and 2022.

In this study, the energy efficiency of some
provincial administrative units in China under
the SBM-Undesirable model was analyzed. The
temporal variation trend of energy efficiency
under carbon constraints was discussed. The
average energy efficiency of some provincial
administrative units in China from 2011 to 2022
5 ) was plotted using ArcGIS software (Fig. 4). The
¢ A energy utilization of provinces in the sample
- period was not optimistic with regard to CO2
pollution. Considering that input and output
Figure 2: Spatial distribution of energy efficiency had some hysteretic characteristics, the
levels in 2016 government and enterprises did their best in
accordance with the carbon emission policies in
the recent 2 years. With the continuous
improvement of carbon transaction markets,

0.000000 -
0111001 - 0323000
0323001 - 0490000
I 0.450001 - 0.629000
I 0.629001 - 0.992000
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the efficient energy utilization of some
provincial administrative units in China under
carbon constraints might be increased in some
years in the future. In view of regions, the
overall energy efficiency of West China is
lower than those in eastern economic zones,
central economic zones, and northeast regions
of China. In Western China, Sichuan reported a
high comprehensive evaluation, and its energy
efficiency was higher than 0.4; however, it was
still a province with low energy efficiency, and
great improvement is needed. The energy
efficiency of other provinces was at a low level.
Governments and enterprises shall aim for
excellent advancement. In Eastern China, the
energy efficiency under carbon emission
constraints was highest, significantly higher
than those of Central China, West China, and
Northeast China. The energy efficiency
generally declined from East China to
Northeast China to Central China and West
China.

[ 0.000000 - 0.111000
E0.111001 - 0.323000
[0.323001 - 0.490000
I 0.490001 - 0.629000
[ 0.625001 - 0.992000

Table 2: Correlation degrees between technological
provinces in China

Figure 4: Average energy efficiency of some
provincial administrative units in China from 2011 to
2022

Grey relational analysis results

In the energy field, innovation environment,
innovation investment, and innovation market
are closely related to energy industrial
development. Hence, these three level-1 factors
that influence energy efficiency were chosen.
Each level-1 factor contains specific level-2
factors. With consideration to data availability,
seven level-2 factors were selected. Specifically,
the level-2 factors of innovation environment
include government support (scientific and
technological  expenditure), technological
innovation (number of patent approvals), and
development level (regional GDP), which can
reflect China’'s support to innovation
environment. Level-2 factors of innovation
investment comprise fund input (internal R&D
inputs) and personnel input (R&D personnel
full-time equivalence), which can indicate labor
and financial inputs for technological
innovation. Level-2 factors of innovation
market include market transaction (sum of
technological ~ market transaction) and
proportion of the industry (proportion of GDP
of the secondary industry), which can show the
technological innovation market conditions
comprehensively. Major factors that influence
the energy environments of provinces in China
were recognized by studying the correlation
degrees of three level-1 indexes and seven
level-2 indexes with energy environmental
efficiency.

innovation factors and energy efficiency of some

Scientific
tech;rolflo ica Number of  Regional Internal R&D personnel Sum of GDP of the
. g patent GDP (100 R&D input full-time technological secondary
Provinces 1 i . - .
expenditure approvals million (10,000 equivalence marl(et~tr.ansactlon 1nfiu§try (100
(100 million (pcs) CNY) CNY) (people/year) (100 million CNY) million CNY)
CNY)
Beijing 0.786 0.777 0.843 0.883 0.762 0.803 0.928
Tianjin 0.846 0.848 0.920 0.790 0.770 0.921 0.827
Shanghai 0.822 0.823 0.872 0.930 0.794 0.947 0.782
Chm;gqm 0.885 0.769 0.769 0.793 0.844 0.853 0.805
Hebei 0.896 0.802 0.780 0.931 0.844 0.884 0.813
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Shanxi 0.946 0.832 0.846 0.879
Liaoning 0.882 0.823 0.919 0.926
jilin 0.819 0.925 0.852 0.923
He‘lr‘l’;‘g]‘a 0.878 0.779 0.944 0.827
Jiangsu 0.881 0.769 0.843 0.773
Zhejiang 0.760 0.907 0.794 0.783
Anhui 0.940 0.833 0.883 0.801
Fujian 0.775 0.830 0.759 0918
Jiangxi 0.873 0.870 0.861 0.838
Shandong 0.913 0.898 0.838 0.759
Henan 0.752 0.881 0.787 0.760
Hubei 0.751 0.826 0.932 0.881
Hunan 0.923 0.863 0.942 0.911
Gua“ggd‘m 0.898 0.939 0.767 0.912
Hainan 0.949 0.831 0.787 0.906
Sichuan 0.770 0.900 0.832 0.777
Guizhou 0.882 0.829 0.884 0.762
Yunnan 0.789 0.882 0.806 0.924
Shaanxi 0.886 0.896 0.817 0.896
Gansu 0.946 0.893 0.788 0.840
Qinghai 0.945 0.933 0.846 0.883
Neml‘le“gg 0.897 0.788 0.854 0.945
Guangxi 0.824 0.782 0.810 0.841
Xizang 0.801 0.760 0.820 0.768
Ningxia 0.816 0.852 0.768 0.893
Xinjiang 0.914 0.895 0.938 0.783

0.939 0.756 0.812
0.852 0.928 0.770
0.817 0.947 0.872
0.907 0.883 0.882
0.878 0.821 0.934
0.796 0.874 0.834
0.811 0.928 0.830
0.944 0.932 0.799
0.868 0.770 0.940
0.887 0.788 0.769
0.776 0.828 0.887
0.753 0.846 0.914
0.927 0.821 0.790
0.864 0.828 0.878
0.900 0.907 0.901
0.782 0.847 0.787
0.909 0.936 0.872
0.774 0.941 0.927
0.812 0.768 0.821
0.870 0.881 0.783
0.806 0.759 0.839
0.906 0.804 0.795
0.881 0.840 0.921
0.851 0.871 0.860
0.758 0.809 0.854
0.926 0.801 0.890

In accordance with the grey correlation degrees
between factors and energy efficiency of
provinces in China in Table 2, the correlation
degrees between factors and energy efficiency
were defined by grey relational analysis
method. Factors with a correlation degree
ranging [0.9,1.0] were defined as extremely
high-correlation factors, indicating their close
relationships with energy efficiency. Factors
with a correlation degree ranging [0.8,0.9] were
defined as high-correlation factors. Factors
with a correlation degree ranging [0.6,0.7] were
defined as general-relevance factors. Factors
with a correlation degree ranging [0.5, 0.6] were
defined as relatively low-correlation factors.
Factors with a correlation degree ranging
[0.4,0.5] were defined as low-correlation factors.
For the simplification of the table, factors were
expressed in abbreviations: STE represents
scientific and technological expenditures, NPA
represents the number of patent approvals,
GDP refers to regional GDP, R&D expenditure is
the internal R&D input, R&D personnel
represents R&D personnel full-time
equivalence, Market transaction expresses the
sum of technological market transaction, and

TVSI represents the GDP of the secondary
industry.

Discussions

Four provinces in China showed high energy
efficiency, while 15 provinces were in the third
echelon. This finding indicated fewer provinces
with good input and output coordination under
carbon emission constraints, except for some
prominent ones. In view of efficiency, the
comprehensive energy efficiency of 12
provincial administrative units in East China,
Central China, and Northeast China was higher
than 0.5, close to the grading standards of
Shanghai, Beijing, Guangdong, and Tianjin in the
first echelon. After the implementation of a
series of CO2 emission reduction policies, the 12
provincial administrative units in the second
echelon demonstrated the possibility of
entering into the first echelon. East China
comprised 4 provinces in the first echelon, 12
provinces in the second echelon, and 15
provinces in the third echelon. The energy
efficiency of East China was 0.657, indicating its
high-efficiency state. In view of regions, the
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energy efficiency of East China and Northeast
China was relatively good, of which the energy
efficiency of East China was better than that of
Northeast China. Shanghai, Beijing, Guangdong,
and Tianjin in East China achieved high-
efficiency development, while the remaining
provinces had different energy efficiency,
indicating the imbalanced development among
provinces in the region. In other words, a great
gap existed among the provinces in East China,
except for some prominent provinces. In
Northeast China, Heilongjiang, Jilin, and
Liaoning formed the second echelon, and the
advantages of their coordinated development
could be utilized. In Central China, the energy
efficiency of provinces varied, but the overall
energy efficiency was not very high. Only
Sichuan was in the second echelon, while the
rest were in the third echelon, implying poor
energy efficlency. The energy quality and
efficiency should be improved greatly.

Innovation environment, innovation
investment, and innovation market showed a
good development trend from 2011 to 2022.
Scientific and technological expenditure,
regional GDP, internal R&D input, R&D
personnel full-time equivalence, and the sum of
technological market transaction all achieved
steady growth. Although FDI decreased slightly
in 2015, 2018, and 2019, it still achieved steady
growth in other years. China is accelerating the
establishment of a new development pattern
centered at the domestic general circulation
and mutual promotion between domestic and
overseas circulations, thus decreasing the
dependence on foreign trade significantly. In
this study, innovation environment, innovation
investment, and innovation market were
chosen as internal factors of technological
innovation, and their correlation degrees with
energy efficiency were calculated by grey
relational analysis. Moreover, the correlation
degrees of influencing factors and energy
efficiency under grey relational analysis were
defined. On this basis, the influencing factors of
energy efficiency were analyzed by combining
the statistical data of provinces. Research
conclusions provide theoretical support to the

proposal of improvement measures in the
future.

Conclusions

This study focuses on the influences of
technological innovation on China's energy
efficlency, and it analyzes the relevant
influencing mechanism. Data and development
status of 31 provinces, cities, and autonomous
regions in China from 2011 to 2022 were
collected. An SBM-Undesirable model of the
panel data of these 31 regions under CO2
emission constraints was established to
measure the total factor energy efficiency.
Regional energy efficiency was also discussed.
On this basis, the influences of three
dimensions of technological innovation, namely,
innovation environment, innovation
investment, and innovation market, on energy
efficiency were evaluated comprehensively.
The correlation degrees of seven indexes of
these three dimensions and the energy
efficiency of each region were estimated by
grey relational analysis. The major conclusions
are as follows:

First, the energy efficiency is not high in most
provinces in China under carbon emission
constraints, with obvious spatial and
geographical differences. In view of grading,
only four provincial administrative regions
exist in the first echelon: Shanghai, Beijing,
Guangdong, and Tianjin. The second echelon has
12 updating administrative units: Zhejiang,
Jiangsu, Liaoning, Jiangxi, Jilin, Anhui,
Heilongjiang, Fujian, Hubei, Shandong, Hunan,
and Henan. The third echelon has 15 provincial
administrative units, which induce substantial
losses and wastes during energy production and
utilization, implying considerable space for
China to improve energy efficiency under
carbon  emission constraints. Provincial
administrative regions in the first and second
echelons concentrate in East China, while
provincial administrative regions in the third
and fourth echelons concentrate in Central
China, West China, and Northeast China.
Energy efficiency decreases from East China to
Northeast China to Central China and then to
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West China. This finding reflects that energy
efficiency is closely related to regional
development level. Given that regions develop
and reform production technologies and
optimize industrial structure after an
improvement in economic development level,
the energy efficiency of a region is influenced
by imbalanced regional development to a large
extent. In West China, specifically, the regional
economic development level is low. In the
future, it must develop the secondary industry
with energy and raw materials. Resource-
friendly development and regional migration of
new technologies and new talents must be
realized to decrease pollutant and carbon
emissions and improve energy efficiency.

Second, technological innovation has significant
influences on energy efficiency. All indexes of
technological innovation are highly correlated
to total factor energy efficiency under carbon
constraints. Scientific and technological
expenditure is an extremely high-correlation
factor of energy efficiency in 70% of provincial
administrative regions. This result reveals that
energy technological innovation cannot be
achieved without government inputs. R&D
personnel full-time equivalence is also an
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