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Abstract

After the rapid increase in the population demography and
industrial revolution, many researchers focus on
maintaining the balance between the consumption and the
production; in this regard, decentralized production plays an
important role to achieve this balance, because of its
technical economic aspect such as power losses reduction
and voltage profile improvement. These advantages can
better exploited through the optimal assessment of
Distributed Generation {DG). This paper is interested in the
study of the optimal location and size of one and multiple DG
based on photovoltaic solar sources PV-DG in Radial
Distribution Network (RDN) using the Time Varying
Acceleration Particle Swarm Optimization Algorithm (TVA-
PSO). This algorithm implemented to maximize the Multi-
Objective Functions (MOF) based on the Environmental
Pollution Reduction Level (EPRL), the Voltage Deviation
Level (VDL), Active Power Loss Level (APLL), the Net Saving
Level (NSL), and finlly the Short Circuit Level (SCL). The
proposed method is tested on the standard IEEE 33-, 69-and
118-bus RDN. Qutcomes proves that the proposed TVA-PSO
is more efficient to solve the optimal allocation of multiple
DGs with high convergence rate and minimum power loss
reduction.

Keywords: Renewable distributed generation, Optimal
energy efficient integration, Electric distribution networks,
TEC levels, Time-varying acceleration particle swarm
optimization.

1. Introduction

The global trend towards preserving the
environment, and saving energy for all
consumers has accelerated the search for new
resources. In this regard the demand for
renewable resources has significantly increased
into RDN due of the operational and economic
benefits such as reduction in energy purchase
from the grid, the deferral in investment for
building new lines, enhancement in system
reliability and stability [1, 2]. The problem of DG
assessment is, in general, a complex
optimization problem. The implemented studies
in this area fall into many categories depending
on the solution algorithms, constraints, and
considered objectives [3].

Mathematically numerous objective functions
were formulated for the optimal assessment of
DG units. These are: Minimization of active
power loss [4], Minimization of reactive and
active power losses [5], Minimization of power
and energy loss [6], Minimization of voltage
deviation [7], Minimization of total operational
costs of DG units [8, 9], Minimization of total
operational cost and minimization of risk factor
[10], Minimization of environmental emissions
[11], Minimization of pollutant emission [12], and
Minimization of total harmonic distortion in
distribution system [13]. Single objective
function is considered to maximize the benefits
of DG. These are: Maximization of voltage
stability margin [14], Maximization of DG
penetration [15], Maximization of network load
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ability due to the DG placement [16],
Maximization of profit of a distribution
company [17], Maximization of fossil fuel cost
saving [18], Maximization of hosting capacity of
renewable  energy sources [19], and
Maximization of the average interruption time
in distribution system [20].

Practically, the problem of assessment of DGs in
RDN becomes a complex multiobjective
function (MOF) problem since it is quite hard to
optimize multiple conflicting objectives in the
same time. Determining the best suitable
solution in view of all the objectives also
becomes difficult since the optimization
algorithms are originally designed to optimize a
single objective. Therefore, researchers have
usually considered a weighted sum approach to
optimize multiple objectives of DG planning. For
this, depending on the weights factor selected to
each objective a single solution is obtained [21].

This paper presents optimal integration of
multiple DG in RDN using TVA-PSO algorithm.
In this regards, optimal incorporation of DG was
installed in three different standard RDN. The
optimal integration has been selected to
maximize the five technical, economic and
environmental levels. The effectiveness of the
TVA-PSOisvalidated by comparing the obtained
results with those reported in literature using
other algorithms.

2. Multi-Objective Problem
Formulation

2.1. Multi-Objective Function

The multi-objective level represented in eq. 1
with aim of maximize technical, economic and
environmental levels by giving a specified
weight to each index depending on the
influences of each one. In this regard, wy, w,, ws,
w, and wg are the weighting factors. In this
study, w,, w; and w, is taken as 0.20, and w5 is
taken as 0.10. Whereas due of the important of
reduction of Pross wy is taken as 0.30:

MOF

Npr Npmr

vy Y

i=1 j=2

+wsy - ISCLy; +w, - NSL;; | (1)
+ws - EPRL,

The Mathematical description of the proposed
levels composed the MOF, given as:

I_Without DG
APLL = ————= —— X 100 (2)
PL\(I)VSI:hOt DG + PL\:)VSI:h DG
V Dy
VDL = Without DG % 100 (3)

VDwithout 6 + V Dwith p

SCWith DG SCWithout DG

SCL = x 100 (4)
SCWithoutDG
ALCy: — ALCy,.
NSL = Without DG Wit DG % 100 (5)
ALCyithout pG
PEy;
PRL = With DG x 100  (6)

PEWithOut DG + PEAWith DG
The mathematical representation of the P can
defined as [18-23]:
(P5 +05)

- 7)

PLoss = Rij

The economical aspect represented in ACL
which considered following the P can be
defined as [10, 11]:

C=Pos XKy XT (8)
The Short Circuit (SC) given by [24]:
Vi

CS =+

7 )

The Voltage Deviation (VD) is considered as
follows [25]:

VD = [1-Vj| (10)
The Pollution of Emissions (PE) is given by [26]:
(11)

2.2. Power Balance and Distribution
Line Constraint

PE = EG, - AE,

The mathematical representation of the power
balance line given by [27-29]:

P; + Ppg = Pp + Ploge (12)
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Q¢ = Qp + Qross (13)

The margin limits of voltage at each bus can be
represented as [30, 31]:

Vmin < |VL| < Vmax (14)
Vi = V| < AV (15)
1Si;] < ISmaxl (16)

2.3. PV-DG Constraints

The PV-DG constraints represented by the
capacity, position, number and the location of
DG given by the equations bellow:

PR 06 < Ppy_pg < PR¥¥5¢ (17)
2 < PV = DGposition < Npus (18)
Npy-p6 < Npy—pg-max (19)
Npg,i/ Location <1 (20)

3. Overview TVA-PSO Algorithm
3.1. Basic PSO algorithm

PSO is one of the most algorithm applied in the
global search strategy, which is introduced in
1995 as a population-based stochastic
optimization algorithm. In PSO, each member of
the population represents a potential solution
and it’s called a particle. The population of
individuals (P) or swarm is evolved through
successive iterations. Each particle, has a
position, and a velocity vector (X)), and (V}), each
particular moved according to [32, 33]:

VT =w -Vl + C17”1[lefest - Xlk]

(21)
+ Ca12| Ghese — X{]

X =Xl vt (22)

Where, Pp.s: represent the best position founded
by the particle, and Gpes: is the best position
founded among all particles, where, c; and c; are
the ‘social’ and ‘cognitive’ components of the
acceleration coefficients, r; and r; are random
values. The weighting function (w) is defined as:

W= Winas ~ O =) () (23)

max

3.2. Time-Varying Acceleration PSO
algorithm

The acceleration coefficients are varied
according toiteration or time. For visiting all the
search space. At the beginning, the value of ¢;
must be higher than c,. Which allow particles to
visit all the search space, whereas at the end of
search, particles try to converge to the global
optima, which mean that c¢; must be small than
c2. These variations can be given by [34]:

Cir — Cqi
max
C — Cyj
€y =Cp + (%) -k (25)
max

Where, c;; and cjrare initial and final values of c;,
crand cy; and are final and initial values of c..

4. Results, Discussion and
Comparison

Two show the efficiency of TVA-PSO the
proposed algorithm is implemented in
MATLAB and tested in the three different tested
system. These are the standard IEEE 33-, 69-, and
118-bus.

The description of these tested systems are
dipected in Table 1 and their single line diagrame
are shown in Figure Figure 1.

Table 1: ???

Descrintion IEEE IEEE IEEE
scrip 33-bus 69-bus 118-bus

Line Number 32 68 117

Bus number 33 69 118

Base Voltage (kV)  12.66 12.66 11.00

Qo {MVar) 2.300 2.6941 17.0400

Pp (MW) 3.715 3.7919 22.7100

The parameters of TVA-PSO algorithm are: c;
=0.5, C1f2.5, Cai =2.5, C2f=0.5, km,3x=200, kmin =1, Wnax
=0.9, Win =0.4, n,=10.

The convergence characteristics of MOF for the
three tested system are presented in Figures
Figure 2, the best solution is represented in red.

As seenin Figure Figure 2, for the IEEE 33 and 69
bus RDN, the comparison of the 20 runs
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indicates, that the result after the integration of
one and three PV-DGs are closer to each other,
with a more closer in the IEEE 33-bus, but they
are so far for the case of two PV-DGs.

In order to reach the optimal solution, for both
RDN, the algorithm converges quickly and takes
less than 20 iterations after the integration of
one PV-DG.

For the case of two PV-DGs, the convergence in
the second test system is faster than the first
system.

For the case of three PV-DGs, the TVA-PSO
algorithm quickly achieved the optimal solution
for the IEEE 33-bus compared to the IEEE 69-bus.
For the third system (IEEE-118 bus), the results of
the integration of three, four and five PV-DGs
are far compared to the previous systems, in
addition, it takes several iterations to reach the
optimal solution, which are more than 150
iterations.
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Figure 1: Single line diagram of standard distribution
systems: a). IEEE 33-bus, b). IEEE 69-bus, c). IEEE 118-
bus

proportional relation between the number of
PV-DGs and the NSL and APLL levels. In addition,
the SCL and VDL increases by increasing the
number of PV-DGs except for the third test
system, where the maximum SCL and VDL have
obtained after the integration of four PV-DGs.
For the EPRL in the first test system the better
results are obtained after the integration of two
PV-DGs, while for IEEE 69 and 118-bus the
maximum EPRL was obtained after the
integration of one and three PV-DGs
respectively.

Figure Figure 3 shows the benefits of the
incorporation of multiple DGs in RDN. It is clear
that the APLL, NSL, and VDL have an important
improvement, compared to EPRL and SCL
especially, in the IEEE 33-, and 69-bus RDN. For
the IEEE 118-bus, the results obtained for the
incorporation of five DGs are better compared
to the other cases except for the EPRL. The
results of the proposed algorithm were
compared with the results obtained by others
algorithms and techniques for the IEEE 33-, 69-,
and 118-bus are dipected in tables 3, 4, and 5
respectively.
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Table 2: Different levels value for all test systems
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Figure 2: Convergence characteristic of TVA-PSO
algorithm: a). IEEE 33-bus, b). IEEE 69-bus, c). IEEE 118-
bus

The result tabulated in Table Table 2 represent
the parameter of different level obtained by the
proposed method after integration of PV-DGs
for all RDNSs.

Test system Case studies APLL NSL SCL VDL EPRL MOF
(%) (%) (%) (%) (%) (%)
IEEE 33-bus One PV-DG 64.7796 45.6305 5.4709 62.7880 19.4496 43.7515
Two PV-DGs 70.5995 58.3560 5.7176 64.1756 33.2026 51.3999
Three PV-DGs 73.5391 64.0180 6.0078 64.8346 27.0867 52.3623
IEEE 69-bus One PV-DG 72.8018 62.6408 0.5408 60.2402 34.9699 51.5300
Two PV-DGs 75.5338 67.6090 1.0141 63.9562 30.7318 53.2565
Three PV-DGs 75.5495 67.6364 1.0161 63.9737 30.8549 53.3525
IEEE 118-bus One PV-DG 65.8836 48.2171 2.4429 58.7809 38.1948 45.4329
Two PV-DGs 67.0621 50.8846 2.5712 60.0929 37.0811 46.5368
Three PV-DGs 67.2785 51.3641 2.5258 59.8596 35.9998 46.6536

The analysis of Table Table 2, illustrates that
thereisa

WAPLL
WNSL
u VDL
mSCL
WEPRL

Two Three | One
DGs DGs DG

One
DG

Two Three | Three Four
DGs DGs DGs DGs

Five
DGs

IEEE 33-bus IEEE 69-bus IEEE 118-bus

Figure 3: Comparison of Different levels for all test
systems

The results of the proposed TVA-PSO for the
three cases of the integration of PV-DGs are
compared with results obtained by employing:
Dynamic Adaptation of PSO (DA-PSO) [35].
Adaptive Dissipative PSO (ADPSO) [35],
backtracking search optimization algorithm
(BSOA) [36], Particle Swarm Optimization (PSO)
[37], Symbiotic Organism Search (SOS) [38],
flower pollination algorithm (FPA) [39], quasi-
oppositional teaching learning  based
optimization (QOTLBO) [40], Bacterial Foraging

Optimization Algorithm (BFOA) [41], intelligent
water drop (IWD) [42], Simulated Annealing (SA)
[43] are provided in Table Table 3: Results
comparison of various algorithms for
the IEEE 33-bus.

To verify the efficiency of TVA-PSO In the IEEE
69-bus, a comparison between the applied
algorithm and other optimization algorithms
namely: Symbiotic Organism Search (SOS) [38],
Harmony Search Algorithm (HSA) [38], Hyper-

Spherical ~ Search  Algorithm (HSSA)  [44]
Standard Genetic ~ Algorithm (sGA)  [45]
harmony search algorithm with differential
operator (HSDO) [46] Particle Swarm
Optimization (pso)  [45] Cuckoo Search
Algorithm (CSA) [45] invasive weed

optimization (IWO) [42 47], Intelligent Water
Drop (IWD) [43 48] Moth-Flame Optimization
(MFO)[44 49], as represented in Table

To demonstrate the effectiveness of the
proposed TVA-PSO in the large RDN (IEEE 118-
bus), a comparative study has been done for
validity the efficiency of TVA-PSO algorithm
with well-known algorithms in the literature.
These algorithms are: Symbiotic Organism
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Search (SOS)[38], augmented Lagrangian genetic
algorithm (ALGA) [50], ant-lion optimizer (ALO)
[51], hybrid Harmony Search Algorithm-Particle
Artificial Bee Colony Algorithm (HSA-PABC)
[52], Hyper-Spherical Search Algorithm (HSSA)
[44], Hybrid genetic fuzzy algorithm (GA-fuzzy)
[53], Simulated Annealing (SA) [43].

Table 4.

Table 3: Results comparison of various algorithms for
the IEEE 33-bus

Cas Ppc (MW)] Pross Vmin
e  Methods (Bus() ) (kw) (p.)
Before DG 210.9875  0.9038
DA-PSO[35] 12120(8)  0.8363 0.9349
(28)
© BSOA [36] 1.8575(8)  118.1200 0.9441
< PSO [37] 2.0000(7)  115.1700 0.9424
- SOS [38] 3.1322(6)  115.0100 0.9441
TVA-PSO 2.8818(7) 1147128  0.949
9
SOS [38] 2.2861(6)  107.3900  0.950
0.8363 0
(28)
AD-PSO[35] 0.5500(15) 106.2400  0.9539
0.6210 (30)
3 BSOA [36] 0.8800 89.3400 0.9665
Q (13)
2 0.9240 (31)
~ FPA [39] 1.0339(12)  89.2000 0.9675
1.0866 (30)
TVA-PSO 0.8246 87.8637 0.964
(13) 0
1.0273
(30)
QOTLBO 1.0834(13) 103.4090  0.9827
[40] 1.1876 (26)
1.1992 (30)
BFOA [41] 0.6521(14)  89.9046 0.9705
0.1984 (18)
1.0672 (32)
IWD [42] 0.6003(9)  85.7800 0.9610
3 0.3000 (16)
g 10112 (30)
& SA [43] 11124(6)  82.0525 0.9677
0.4874(18)
0.8679
(30)
TVA-PSO 0.7997(13) 75.9176 0.964
0.5560 2
(25)
0.9771
(30)

To demonstrate the effectiveness of the
proposed TVA-PSO in the large RDN (IEEE 118-
bus), a comparative study has been done for
validity the efficiency of TVA-PSO algorithm
with well-known algorithms in the literature.
These algorithms are: Symbiotic Organism
Search (SOS)[38], augmented Lagrangian genetic
algorithm (ALGA) [50], ant-lion optimizer (ALO)
[51], hybrid Harmony Search Algorithm-Particle
Artificial Bee Colony Algorithm (HSA-PABC)
[52], Hyper-Spherical Search Algorithm (HSSA)
[44], Hybrid genetic fuzzy algorithm (GA-fuzzy)
[53], Simulated Annealing (SA) [43].

Table 4: Results comparison of various algorithms

for
the IEEE 69-bus

Cas Ppc (MW) Pross Vhin
Methods (5 ) (kw) (p.)
Before DG 224.9480  0.9092
SOS [38] 2.0870(57) 118.6050  0.9586

@ HSA [38] 1.4363(65) 112.0690  0.9656

S HSSA [44] 1.2070 (61)  99.3970 0.9554

~ SGA [45] 2.3000 (61)  89.3771 0.9708
TVA-PSO 17167 (61) 84.0387  0.9674
SOS [38] 0.3612(57) 102.9200  0.9669

1.6948

(58)
HSDO 1.5932 (64) 96.5600  0.9669
[46] 0.0544

8 (65)

a PSO [45] 0.7000 (14)  83.9100 0.9907

2 2.1000 (62)

~ CSA [45] 0.6006 76.4000 0.9902

(22)
2.1000 (61)

TVA-PSO 0.4581 72.8630  0.9731
(18)
1.6252 (61)

PSO [40] 0.9925(17) 83.2000  0.9901
1.1998 (61)
0.7956 (63)

IWO [47] 0.2381(27) 74.5900 0.9792
1.3266 (61)
0.4334

§ (65)

0 IWD [48] 0.2999 (17)  73.5500 0.9730

o 1.3200(60)

2.4388
(63)
MFO [49] 0.3000{21)  73.4950 0.9788
1.4500 (61)
0.3000(65)
TVA-PSO 0.2579(17) 72.8012 0.9729
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0.1934
(23)
1.6216 (61)

As shown in Table Table 3, for the installation
of one PV-DG the SOS algorithm have the
minimum Py, (115.0100 kW) with a percentage
of reduction of 45.4896 %, compared to the
Piss obtained by the TVA-PSO (114.7128 kW),
this comparison reveals that the TVA-PSO is
better than SOS with a difference of 0.2972
kW. For the case of two PV-DGs, the FPA
algorithm has the minimum P;.; among other
algorithms with 89.2000 kW, whereas the Py
recorded by TVA-PSO algorithm equals to
87.8637 kW which is less than P.. obtained by
the FPA algorithm and the other algorithms. In
the case of the installation of three PV-DGs,
the TVA-PSO has the best performance in
terms of minimizing P, compared to the
other algorithms.

Table 5: Results comparison of various algorithms
for
the IEEE 118-bus

Cas Poc (MW) Pross Vmin
e  Methods @ o (kw) (p.u)
Before DG 1297.500  0.8688
SOS [38] 1.2591 (68) 875.2687  0.9095
2.3788 (70)
4.7958 (104)
ALGA 3.5130 (38) 738.6800  0.9545
[50] 2.9800 (72)
" 2.8750 (111)
g ALO[51] 2.4500(40)  694.4500  0.9527
< 2.4500 (73)
A 2.5000 (110)
HAS- 3.2500 (47) 677.7400  0.9127
PABC 2.9500 (71)
[52] 3.2000 (108)
TVA-PSO  2.8090(39) 671.8826 0.9486
2.9149 (70)
2.8268 (110)
HSSA [44]  1.4355(52) 732.130 0.9355
0.8000 (79)
1.3115 (112)
1.8798 (116)
3 GA- 2.1379 (42) 695.7160  0.9513
= fuzzy [53] 1.3621(52)
2 2.7410 (74)
= 2.4141 (110)
ALGA[50]  3.3845(38) 663.7800  0.9545
1.6050 (51)
2.9810 (72)
3.1264 (110)

TVA-PSO 2.4239 (40)
2.3205 (75)
1.7835 (97)
2.6752 (110)
1.1329 (56)
4.5353 (36)
2.1318 (75)
4.9452 (103)
0.7501 (116)
0.9665 (68)
2.5979 (70)
0.7936 (104)
0.5095 (106)
2.4469 (108)
GA- 2.6033 (41)
fuzzy [53] 11610 (51)
2.7855 (73)
1.4538 (81)
2.4765 (111)
1.5058 (33)
1.7098 (40)
1.0158 (50)
3.0000 (72)
2.6102 (110)

637.2725 0.9523

SA [43] 858.8133  0.9190

SOS [38] 800.3249 0.9095

4 PV-DGs

635.4330 0.9558

TVA-PSO 631.0503 0.9511

As shown in Table 3, for the installation of one
PV-DG the SOS algorithm have the minimum
Pross (115.0100 kW) with a percentage of
reduction of 45.4896%, compared to the Pros
obtained by the TVA-PSO (114.7128 kW), this
comparisonreveals that the TVA-PSO is better
than SOS with a difference of 0.2972 kW. For
the case of two PV-DGs, the FPA algorithm has
the minimum P, among other algorithms
with 89.2000 kW, whereas the P, recorded
by TVA-PSO algorithm equals to 87.8637 kW
which is less than P obtained by the FPA
algorithm and the other algorithms. In the
case of the installation of three PV-DGs, the
TVA-PSO has the best performance in terms of
minimizing P compared to the other
algorithms.

The analysis of results tabulated in Table Table 4
indicates that the results of P, obtained by
TVA-PSO are better than other algorithms. By
doing a numerical comparison with the other
algorithms. For the integration of one PV-DG, it
can be noticed that the TVA-PSO has improved
the system performance by minimizing the Pposs
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to 84.0387 kW. In the other side, the minimum
power losses obtained among the compared
algorithms is recorded by SGA which is
minimized to 89.3771 kW, which means that
TVA-PSO is saved 5.3384 kW more than SGA
which represent 2.5301 %.

Through the integration of two PV-DGs, the
amount of Py, obtained by the proposed
algorithm is estimated at 72.8630 kW and it is
obviously the minimum results if it is
compared with those obtained with the other
algorithms.

In order to verify the accuracy of the TVAPSO
for the integration of three PV-DGs, the
numerical comparison with the other
algorithms shows that TVA-PSO outperforms
these algorithms by reducing total power
losses to

72.8012 kW which has reduced by MFO to
73.4950 kW which is considered as the best
results among compared algorithms.

To show the efficiency of TVA-PSO how to deal
in the large-scale systems, the installation of
three, four and five PV-DGs is introduced.
Through Table 5, for the case of three PV-DGs,
the P, obtained by TVA-PSO is less than
obtained by other algorithms with a comparison
between TVA-PSO and HSA-PABC we found
that TVA-PSO saved 5.8574 kW. For the
integration of four PV-DGs, if we take ALGA as
an example, we observe that the P of the
proposed algorithm is less than obtained by
ALGA with 0.0247%. For the integration of five
PV-DGs, always the TVA-PSO recorded the
minimum results of Pr.s compared to the other
algorithms, in this time the minimum result of
PLoss obtained in the literature is 635.4330 kW
which is recorded by GA-fuzzy, the comparison
between the precedent algorithms (TVA-PSO
and GA-fuzzy) proves that the proposed
algorithm is exceeds the other algorithms.

Figure Figure 4 indicates the bus voltage
profiles of different case for all tested systems.

Before PV-DG
One PV-DG
Two PV-DGs
Three PV-DGs

5 10 15 20 25 30
Bus Number

(a)
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(c)

Figure 4: Bus voltages profile of standard
distribution system. a). IEEE 33-bus, b). IEEE 69-bus,
¢). IEEE 118-bus

Through Figure Figure 4, the comparison of
voltage profiles before and after PV-DGs
integrations shows that in general after the
integration of PV-DGs the voltage profiles have
improved in all buses, with a different
contribution for each number of PV-DGs, and
this is valid for the three tested systems.

For the IEEE 33-bus RDS, the integration of one
PV-DG gives the maximum voltages in buses
from 26 to 29 as well as in the first 11 buses,
which is related to the integration of PVDG in
bus 7. For the other buses, the maximum
voltages are obtained after the integration of
two and three PV-DGs with better enhancement

P
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for the case of three PV-DGs compared to two
PV-DGs installation, which is due to the total
size of the three PV-DGs which is distributed on
three different places, which it has more effect
on the weakest busses, where the minimum
voltage is reached the value 0.9499 p.u.

For the IEEE 69-bus RDS, due to the heights total
size of PV-DGs the integration of two and three
PV-DGs gives better improvement of voltage
profiles compared to the case of one PV-DG. The
voltage profiles for the cases of integration of
two and three PV-DGs are identic in all the
buses, moreover, for the buses from 28 to 69, the
voltage profiles are slightly similar for all the
cases, also the minimum voltage is improved to
0.9674, 0.9731 and 0.9729 p.u. respectively for
the incorporation of one, two, and three PV-
DGs.

For the IEEE 118-bus RDS, the best voltage
profiles are obtained after the integration of
PV-DGs, and the voltages are in the allowable
limits, in the cases of installing three and four
PV-DGs the voltage profiles is significantly
improved, but it can be observed that it has
more enhancement in the case of five PV-DGs,
in other words, the number of PV-DG is the first
reason of this clear improvement, in this
manner, the voltages values are enhanced in
almost busses, in addition, the minimum
voltages are improved to 0.9486, 0.9523, 0.9511
p.u., respectively for three, four and five PVDGs.
The impact of the incorporation PV-DG on
active power losses for the three test systems is
illustrated in Figure Figure 5.

As shown in Figure Figure 5, the P, per
branches have a clear minimization after the
installation of PV-DGs for the three RDN. For
the IEEE 33bus, it is clearly seen that the
integration of three PV-DGs gives the minimum
Pioss in all branches, which is dependent on the
sizes of the PV-DGs connected in different
weakest busses. Branch number 2 is containing
the losses which is 52.0768 kW followed by
branch number 5 that it has an amount of
38.5656 kW, those branches are more affected
by the incorporation of PV-DGs compared to the
other branches. In general, the integration of

three PV-D gives the minimum result of Pio
compared to the cases of one and two PV-DGs.

60
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One PV-DG
Two PV-DGs | |
Three PV-DGs
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Figure 5: Active power loss of standard distribution
system: a) IEEE 33-bus, b) IEEE 69-bus, c) IEEE 118-bus.

For the IEEE 69-bus, the comparison between
the three cases of PV-DGs integration with the
case before PV-DGs shows that the P is
decreased in all the branches, in addition, the
integration of three PV-DGs gives the best
results in all the branches, moreover, the peak
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of Pioss is decreased from 49.6845to0 14.7174 kW
in branch number 56.

For the large RDN (IEEE 118-bus), the integration
of multi PV-DGs can affect all the branches by
the minimization of P in each branch, which
is appears through the comparison of the three
cases of the integration of PV-DGs with the
system before PV-DG. The integration of five
PV-DGs is more efficient, which is allowed to
minimize the P especially in branch number
69, which contains the peak of loss that is equal
to 84.7016 kW and became 23.5013 kW.

5. Conclusions

In this paper, the proposed TVA-PSO algorithm
have been tested on the three IEEE RDNs to
determine the optimal location and size of PV-
DG, considering the maximization of technical,
economic and environmental levels, which are
the APLL, SCL, NSL, EPRL, and VDL.

The outcomes obtained show the advantages of
the incorporation of PV-DG for all the case
studies by reducing the total active power
losses and improvement of the voltage profiles
which is becoming in the permissible limits, in
addition, the better results have achieved after
the integration of multi PV-DGs. In other words
in the case of the integration of three PV-DG the
Pioss is reduced with a percentage of reduction
around 64.01, 67.63, and 48.21 % respectively for
the IEEE 33-, 69-, and 118-bus.

The superiority of the applied algorithm has
demonstrated by compared the results obtained
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