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Abstract 

In the recent years, a considerable growth was about the integration 

of renewable sources in the Radial Distribution Systems (RDS), as 

Photovoltaic Distributed Generators (PVDG) due to their importance 

in achieving plenty desired technical and economic benefits. 

Implementation of the Distribution Static Var Compensator (DSVC) 

in addition to the PVDG would be one of the best choices that may 

provide the maximum of those benefits. Hence, it is crucial to 

determine the optimal allocation of the devices (PVDG and DSVC) 

into RDS to get satisfactory results and solutions. This paper is 

devoted to solving the allocation problem (location and sizing) of 

hybrid PVDG and DSVC units into the standards test systems IEEE 33-

bus and 69-bus RDSs. Solving the formulated problem of the optimal 

integration of hybrid PVDG and DSVC units are based on minimizing 

the proposed Multi-Objective Functions (MOF) which is represented 

as the sum of the technical-economic parameters of Total Active 

Power Loss (TAPL), Total Reactive Power Loss (TRPL), Total Voltage 

Deviation (TVD), Total Operation Time (TOT) of the overcurrent 

relays (OCRs) installed in the RDS, the Investment Cost of PVDGs 

(ICPVDG) and the Investment Cost of DSVC (ICDSVC)), by applying 

various recent metaheuristic optimization algorithms. The 

simulation results reveal the superiority and the effectiveness of the 

Slime Mould Algorithm (SMA) in providing the minimum of MOF, 

including minimization of the powers losses until 16.209 kW and 

12.110 kVar for the first RDS, 4.756 kW and 7.003 kVar for the second 

RDS, enhancing the voltage profiles and the overcurrent protection 

system. Based on the paper’s results it is recommended to optimally 

integrate both PVDG and DSVC units into practical distribution 

networks. 

Introduction 

The capacities of the distribution lines are usually 

limited; therefore, it is important to consider the 

future load additions, and how they will be served [1]. 

The renewable energy sources-based Distributed 

Generation (DG) can help to solve the challenges 

mentioned above for future MV Radial Distribution 

System (RDS).   

Aside from traditional producing units, modern power 

systems incorporate a variety of Renewable Energy 

Sources (RESs) [2]. There are several FACTS (Flexible 

Alternating Current Transmission System) devices 

available.  

For now, FACTS devices are the most sophisticated 

tools of reactive energy compensation used in RDS [3]. 

In RDS, the reactive power flow produces issues such 

as power losses, poor power factor, voltage drop, and 

so on. As a result, reactive power compensation is 

critical in the operation of the RDS in order to tackle 

the concerns outlined [4]. In passive RDSs, some of the 

achieved benefits when the Photovoltaic Distributed 

Generation (PVDG) sources are present, assigned to 

other devices among which Distributed Static Var 

Compensator (DSVC) stand out. The allocation of DSVC 

to enhance the reliably and performance of the RDS, is 

known as one of the most affordable solutions.  
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For the past few years, many methods and 

optimization algorithms applied for finding the 

optimum allocation of PVDG and DSVC simultaneously, 

to compensate both of active and reactive powers in 

RDSs: applied Mixed integer linear programming 

(MILP) to the maximum hosting capacity of DG and SVC 

in RDS in [5], an analytical method based the bus 

impedance matrix for minimizing active power loss in 

[6], Chu-Beasley Genetic Algorithm (CBGA) to reduce 

the investment and operation costs in [7], Enhanced 

Genetic Algorithm (EGA) to minimize both of total 

active power losses and the voltage deviation in [8]. 

Applied fuzzy and GA technique for reducing the power 

supply and the active power loss in [9], Implemented 

Mutation Differential Evolution (IMDE) algorithm to 

mitigate the total cost of losses in the year in [10], 

Adaptive Differential Search (ADS) algorithm to reduce 

the total power loss and total combined cost in [11].   

Applied Particle Swarm Optimization (PSO) algorithm-

based loss sensitivity factor for power loss and voltage 

deviation reductions in [12], External PSO (EPSO) 

algorithm to maximum value for the economic savings 

in [13], Constriction Factor PSO (CFPSO) algorithm for 

minimizing power losses and voltage deviation with 

improving the voltage stability index in [14], Cuckoo 

Search Algorithm (CSA) to minimize loss power, 

voltage deviation and the SVC’s investment cost of in 

[15], Improved Grey Wolf algorithm (IGWA) to 

minimize the investment costs, the active power 

losses, and the system voltage deviations in [16], 

Enhanced Grey Wolf Algorithm (EGWA) for minimizing 

the investment equipment, and maximizing the 

benefits from power losses reduction in [17], Applied 

Biogeography-Based Optimization (BBO) algorithm for 

minimization of total harmonic distortion, also to 

reduce powers loss in [18], Moth–Flame Optimization 

(MFO) algorithm applied for minimizing the power 

loss, voltage deviation, and annual operating cost in 

[19], used Back-tracking Search Algorithm (BSA) for 

minimization the power losses in [20], Water Cycle 

Algorithm (WCA) for minimizing the voltage deviation, 

power losses, energy cost, and emissions in [21], 

Implanted the Salp Swarm Algorithm (SSA) to attain 

technical, economic, and environmental benefits in 

[22], Mutated Salp Swarm Algorithm (MSSA) for the 

power losses minimization in [23], the new Gbest-

guided Artificial Bee Colony (GABC) algorithm for the 

minimization of power losses and various cost [24], 

recently applied an Opposition-based Competitive 

Swarm Optimizer (OCSO) algorithm to minimize the 

annual operating cost [25].  

In this paper, an allocation (location and sizing) 

problem of PVDG and DSVC units have been 

formulated in order to minimize a Multi Objective 

Functions (MOF) which is considered as the sum of the 

technical and economical parameters of Total Active 

Power Loss (TAPL), Total Reactive Power Loss (TRPL), 

Total Voltage Deviation (TVD), Total Operation Time 

(TOT) of the overcurrent relays installed in the RDN, 

the Investment Cost of PVDGs ( 𝐼𝐶𝑃𝑉𝐷𝐺 ) and the 

Investment Cost of DSVC ( 𝐼𝐶𝐷𝑆𝑉𝐶 ). Solving the 

mentioned allocation problem of PVDGs and DSVC was 

based on the applying and comparing of various new 

optimization algorithms that been developed in the 

last years, which are Particle Swarm Optimization 

(PSO) [26], Whale Optimizer Algorithm (WOA) [27], Ant 

Lion Optimization (ALO) [28], Grasshopper 

Optimization Algorithm (GOA) [29], Salp Swarm 

Algorithm (SSA) [30] and Slime Mould Algorithm (SMA) 

[31]. The selected algorithms were tested on the two 

standards IEEE 33-bus and 69-bus radial distribution 

systems.   

The study is composed of 4 main sections followed by 

a list of references, where it is organized as:  

Section I: presenting the models of PVDG and DSVC 

units.  

Section II: demonstrates the evaluation of the 

proposed Multi-Objective Functions.  

Section III: reveal the obtained Optimal Results and 

Analysis. Final Section: Contains the Conclusions and 

the achievements including the future perspectives. 

The PVDG and DSVC Modeling 

Model of PVDG 

The beta Probability Density Function (PDF) represent 

the model of solar irradiance at each of the day’s 

hours, which is based on historical data [32]. For every 

period (in the actual study: 1 h), the PDF for solar 

irradiance may be formulated in [33]: 
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 𝑓𝑏(𝑠) =  {
𝛤(𝐴 + 𝐵)

𝛤(𝐴)𝛤(𝐵)
𝑠(𝑎−1)(1 − 𝑠)(𝛽−1)

0

0 ≤ 𝑠 ≤ 1 𝐴, 𝐵 ≥ 0

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

where: 𝐴 – and 𝐵 – the parameters of 𝑓𝑏 (𝑠), and are 

defined as: 

 𝐵 = (1 − 𝜇) (
𝜇(1 − 𝜇)

𝜎2
− 1) (2) 

 𝐴 =
𝜇 × 𝐵

1 − 𝜇
 (3) 

where: 𝜎 - and 𝜇 - the standard deviation and mean, 

respectively [34]. The solar irradiance state’s 

probability 𝑠  through any certain hour could be 

formulated as: 

 𝑃𝑠{𝐺} =  ∫ 𝑓𝑏(𝑠) 𝑑𝑠
𝑠2

𝑠1

 (4) 

The PV module’s output power can be formulated as in 

[31-35]: 

 𝑃𝑃𝑉0
(𝑠) = 𝑁 × 𝐹𝐹 × 𝑉𝑦 × 𝐼𝑦  (5) 

 𝐹𝐹 =
𝑉𝑀𝑀𝑃 × 𝐼𝑀𝑃𝑃

𝑉𝑜𝑐 × 𝐼𝑠𝑐

 (6) 

 𝑉𝑦 = 𝑉𝑜𝑐 × 𝐾𝜈 × 𝑇𝑐𝑦 (7) 

 𝐼𝑦 = 𝑠[𝐼𝑠𝑐 + 𝐾𝑖 × (𝑇𝑐𝑦 − 25)] (8) 

 𝑇𝑐𝑦 = 𝑇𝐴 + 𝑠 (
𝑁𝑂𝑇 − 20

0.8
) (9) 

The total output power of the DG unit depends on the 

PV panel specification and its irradiance 

characteristics.   

 𝑃𝑃𝑉(𝑡) = ∫ 𝑃𝑃𝑉0
(𝑠) 𝑃𝑠{𝐺}𝑑𝑠

𝑠2

𝑠1

 (10) 

Model of DSVC 

The DSVC’s general circuit structure is demonstrated in 

Figure 1 [36, 37]. It may be seen that a DSVC is 

composed of a thyristor-controlled reactor and fixed 

capacitor. 

 

Figure 1: A model of DSVC device. Left - Circuit structure, right 
- Equivalent model 

The equivalent susceptance of the DSVC device 

(BDSVC) is determined by the firing angle (𝛼) of the 

thyristors [36-38], can be expressed as follows: 

 𝐵𝐷𝑆𝑉𝐶 = 𝐵𝐿(𝛼) + 𝐵𝑐 (11) 

 𝐵𝐿(𝛼) =  −
1

𝐿𝜔
(1 −

2𝛼

𝜋
) , 𝐵𝐶 = 𝐶𝜔 (12) 

where: 𝐵𝐶  – the parallel capacitor reactance, 𝐵𝐿  –  the 

series inductance reactance. 𝐶  – and L – the 

capacitance of the capacitor and the inductance of the 

reactor, respectively. 𝑉𝑗  - the value of voltage in node 

𝑗. The reactive power and current controlled by the 

DSVC device represented by the following equations: 

 𝑄𝐷𝑆𝑉𝐶 = −𝐵𝐷𝑆𝑉𝐶 𝑉𝑗
2 (13) 

 𝐼𝐷𝑆𝑉𝐶 = −𝐵𝐷𝑆𝑉𝐶𝑉𝑗
2 (14) 

When the load of system is capacitive, the DSVC utilize 

thyristor-controlled coils to consume 𝑄𝐷𝑆𝑉𝐶 , 

otherwise, when the load of system is inductive which 

is predominantly, the DSVC utilize the parallel-coupled 

capacitors and delivers 𝑄𝐷𝑆𝑉𝐶 ,  thus ameliorating 

voltage conditions [38]. The acceptable limits of DSVCs 

are also included in the problem formulation as a 

reactive power (inductive or capacitive) function [39, 

40]: 

 −𝑄𝐷𝑆𝑉𝐶
max ≤ 𝑄𝐷𝑆𝑉𝐶 ≤ +𝑄𝐷𝑆𝑉𝐶

max  (15) 
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where:  −𝑄𝐷𝑆𝑉𝐶
max  and +𝑄𝐷𝑆𝑉𝐶

max are the maximum 

injected inductive and capacitive reactive power 

boundaries of the DSVCs, respectively. 

Multi-Objective Functions Evaluation 

Multi-Objective Functions 

The Multi-Objective Functions (MOF) is proposed and 

developed in this paper to optimally locate and size 

both of PVDG and DSVC units in the RDS by minimizing 

simultaneously the technical and economical 

parameters of Total Active Power Loss (TAPL), Total 

Reactive Power Loss (TRPL), Total Voltage Deviation 

(TVD), Total Operation Time (TOT) of the overcurrent 

relays installed in the RDS, the Investment Cost of 

PVDGs (ICPVDG) and the Investment Cost of DSVC 

(ICDSVC)), where it would be formulated as follows: 

 

𝑀𝑂𝐹

=  Minimize ∑  

𝑁𝐵𝐿𝐺

𝑖=1

∑  

𝑁𝐵𝐿𝐺

𝑗=2

∑  

𝑁𝑅

𝑖=1

∑  

𝑁𝑃𝑉𝐷𝐺

𝑖=1

∑  

𝑁𝐷𝑆𝑌𝐶

𝑖=1

 

[

𝑇𝐴𝑃𝐿𝑖,𝑗 + 𝑇𝑅𝑃𝐿𝑖,𝑗

+𝑇𝑉𝐷𝑗 + 𝑇𝑂𝑇𝑖 +

𝐼𝐶𝑃𝑉𝐷𝐺,𝑖 + 𝐼𝐶𝐷𝑆𝑉𝐶,𝑖

] 

(16) 

The first technical parameter is the TAPL [41], which is 

formulated as follows: 

 𝑇𝐴𝑃𝐿𝑖,𝑗 = ∑  

𝑁bus 

𝑖=1

∑  

𝑁bus 

𝑗=2

𝐴𝑃𝐿𝑖,𝑗 (17) 

 
𝐴𝑃𝐿𝑖,𝑗 = 𝛼𝑖𝑗(𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗)

+ 𝛽𝑖𝑗(𝑄𝑖𝑃𝑗 + 𝑃𝑖𝑄𝑗) 
(18) 

 𝛼𝑖𝑗 =
𝑅𝑖𝑗

𝑉𝑖𝑉𝑗

cos (𝛿𝑖 − 𝛿𝑗) (19) 

 𝛽𝑖𝑗 =
𝑅𝑖𝑗

𝑉𝑖𝑉𝑗

sin (𝛿𝑖 + 𝛿𝑗) (20) 

where: 𝑅𝑖𝑗   – resistance of the line. 𝑁𝑏𝑢𝑠  – the bus 

number, (𝛿𝑖 , 𝛿𝑗 ) – and (𝑉𝑖 , 𝑉𝑗 ) – the angles and the 

voltages, respectively. (𝑃𝑖 , 𝑃𝑗) – and (𝑄𝑖 , 𝑄𝑗 ) – active 

and reactive powers, respectively.  

The second technical parameter is the TRPL [42], which 

is formulated as follows: 

 𝑇𝑅𝑃𝐿𝑖,𝑗 = ∑  

𝑁bus 

𝑖=1

∑  

𝑁bus 

𝑗=2

𝑅𝑃𝐿𝑖,𝑗  (21) 

 
𝑅𝑃𝐿𝑖,𝑗 = 𝛼𝑖𝑗(𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗)

+ 𝛽𝑖𝑗(𝑄𝑖𝑃𝑗 + 𝑃𝑖𝑄𝑗) 
(22) 

 𝛼𝑖𝑗 =
𝑋𝑖𝑗

𝑉𝑖𝑉𝑗

cos (𝛿𝑖 − 𝛿𝑗) (23) 

 𝛽𝑖𝑗 =
𝑋𝑖𝑗

𝑉𝑖𝑉𝑗

sin (𝛿𝑖 + 𝛿𝑗) (24) 

where:  𝑋𝑖𝑗  - the resistance of the line.  

The third technical parameter is the TVD [43, 44], and 

it is formulated as: 

 𝑇𝑉𝐷𝑗 = ∑  

𝑁bus 

𝑗=2

|1 − 𝑉𝑗| (25) 

The fourth technical parameter is the TOT of the 

overcurrent relay (OCR) [45, 46]: 

 𝑇𝑂𝑇𝑖 = ∑  

𝑁𝑅

𝑖=1

𝑇𝑖  (26) 

 𝑇𝑖 = 𝑇𝐷𝑆𝑖 (
𝐴

𝑀𝑖
𝐵 − 1

)  and 𝑀𝑖 =
𝐼𝐹

𝐼𝑃

 (27) 

where: 𝐼𝑡 the relay operation time, TDS is the time dial 

setting. 𝐴 and 𝐵 are the relay’s constants which set to 

0.14, 0.02, respectively. 𝑀  – the multiple of pickup 

current, 𝐼𝐹  and 𝐼𝑃 are the fault and the pickup current, 

𝑁𝑅  is the OCRs’ number.  

The fifth economical parameter is the 𝐼𝐶𝑃𝑉𝐷𝐺  [47, 48]. 

The Investment cost (𝐼𝐶𝑃𝑉𝐷𝐺) as the sum of installed 

PVDG capital cost, operation, and maintenance cost, 

can be formulated as follows: 

 𝐼𝐶𝑃𝑉𝐷𝐺 = ∑  

𝑁𝑃𝑉𝐷𝐺

𝑖=1

𝐶𝑃𝑉𝐷𝐺,𝑖 ⋅ 𝑃𝑃𝑉𝐷𝐺,𝑖 (28) 

where: 𝑁𝑃𝑉𝐷𝐺 , 𝐶𝑃𝑉𝐷𝐺  and 𝑃𝑃𝑉𝐷𝐺  are the number of 

PVDG units installed, the cost of one PVDG in $/kW, 

and the active power injected in distribution system by 

PVDG in kW, respectively. The 𝐼𝐶𝑃𝑉𝐷𝐺 consists of 

capital cost ( 𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙 ), operation, and maintenance 

(𝐶𝑂&𝑀): 
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 𝐶𝑃𝑉𝐷𝐺 = 𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙 + 𝐶𝑂&𝑀     ($/𝑘𝑊)  (29) 

Capital cost is 4000 $/kW, including PV module, 

inverter, transportation, and installation engineering.  

The final economical parameter is the Investment cost 

of DSVCs (𝐼𝐶𝐷𝑆𝑉𝐶) which are placed in the system is 

represented by the following equation [49, 50]: 

 𝐼𝐶𝐷𝑆𝑉𝐶 = ∑  

𝑁𝐷𝑆𝑉𝐶

𝑖=1

𝐶𝐷𝑆𝑉𝐶,𝑖 ⋅ 𝑃𝐷𝑆𝑉𝐶,𝑖 (30) 

where: 𝑁𝐷𝑆𝑉𝐶 , 𝐶𝐷𝑆𝑉𝐶  and 𝑄𝐷𝑆𝑉𝐶  the number of DSVCs 

installed, the cost of one DSVC in $/kVar, and the 

reactive power injected in distribution system, 

respectively. The cost function of one DSVC is given by 

[49, 50]: 

 

𝐶𝐷𝑆𝑉𝐶,𝑖 = 0.0003𝑄𝐷𝑆𝑉𝐶,𝑖
2

− 0.3051𝑄𝐷𝑆𝑉𝐶,𝑖

+ 127.38    ($/𝑘𝑉𝑎𝑟)  

(31) 

Equality Constraints 

Equality constraints may be expressed by the balanced 

powers equations as follows: 

 𝑃𝐺 + 𝑃𝑃𝑉𝐷𝐺 = 𝑃𝐷 + 𝐴𝑃𝐿 (32) 

 𝑄𝐺 + 𝑄𝐷𝑆𝑉𝐶 = 𝑄𝐷 + 𝑅𝑃𝐿 (33) 

where: (𝑄𝐺 , 𝑃𝐺) are the total reactive and active power 

from the generator. (𝑄𝐷, 𝑃𝐷) are the total reactive and 

active power of the load. (RPL, APL) are reactive and 

active power loss, respectively. 𝑃𝑃𝑉𝐷𝐺  and 𝑄𝐷𝑆𝑉𝐶  are 

the output powers coming from PVDG and DSVC, 

respectively. 

Distribution Line Constraints 

Distribution line constraints would be given as 

inequality constraints and formulated as: 

 𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥  (34) 

 |1 − 𝑉𝑗| ≤ Δ𝑉𝑚𝑎𝑥 (35) 

 |𝑆𝑖𝑗| ≤ 𝑆𝑚𝑎𝑥  (36) 

where: 𝑉𝑚𝑖𝑛  and 𝑉𝑚𝑎𝑥   are the minimum and 

maximum limits of bus voltage, 𝛥𝑉𝑚𝑎𝑥  is the maximum 

limits of voltage drop. 𝑆𝑖𝑗  and 𝑆𝑚𝑎𝑥  are the apparent 

power in the distribution line and the maximum of 

apparent power, respectively. 

PVDG and DSVC Units Constraints 

PVDG and DSVC units constraints could be formulated 

as follows: 

 𝑃𝑃𝑉𝐷𝐺
𝑚𝑖𝑛 ≤ 𝑃𝑃𝑉𝐷𝐺 ≤ 𝑃𝑃𝑉𝐷𝐺

𝑚𝑎𝑥  (37) 

 𝑄𝐷𝑆𝑉𝐶
𝑚𝑖𝑛 ≤ 𝑄𝐷𝑆𝑉𝐶 ≤ 𝑄𝐷𝑆𝑉𝐶

𝑚𝑎𝑥  (38) 

 ∑  

𝑁𝑃𝑉𝐷𝐺

𝑖=1

𝑃𝑃𝑉𝐷𝐺(𝑖) ≤ ∑  

𝑁bus 

𝑖=1

𝑃𝐷(𝑖) (39) 

 ∑  

𝑁𝐷𝑆𝑉𝐶

𝑖=1

𝑄𝐷𝑆𝑉𝐶(𝑖) ≤ ∑  

𝑁bus 

𝑖=1

𝑄𝐷(𝑖) (40) 

 2 ≤ 𝑃𝑉𝐷𝐺Position ≤ 𝑁bus  (41) 

 2 ≤ 𝐷𝑆𝑉𝐶Position ≤ 𝑁bus  (42) 

 𝑁𝑃𝑉𝐷𝐺 ≤ 𝑁𝑃𝑉𝐷𝐺⋅𝑚𝑎𝑥  (43) 

 𝑁𝐷𝑆𝑉𝐶 ≤ 𝑁𝐷𝑆𝑉𝐶⋅𝑚𝑎𝑥  (44) 

 𝑛𝑃𝑉𝐷𝐺,𝑖/ Location ≤ 1 (45) 

 𝑛𝐷𝑆𝑉𝐶,𝑖/ Location ≤ 1 (46) 

where: 𝑃𝑃𝑉𝐷𝐺
𝑚𝑖𝑛 , 𝑄𝐷𝑆𝑉𝐶

𝑚𝑖𝑛  are the minimum of the output 

power injected by PVDG and DSVC, respectively. 

𝑃𝑃𝑉𝐷𝐺
𝑚𝑎𝑥 , 𝑄𝐷𝑆𝑉𝐶

𝑚𝑎𝑥  are the maximum of output power 

injected by PVDG, and DSVC, respectively. 𝑁𝑃𝑉𝐷𝐺  and 

𝑁𝐷𝑆𝑉𝐶  are the PVDG and DSVC units’ number, 

respectively. 𝑛𝑃𝑉𝐷𝐺  and 𝑛𝐷𝑆𝑉𝐶  are the locations of 

PVDG and DSVC units at bus 𝑖. 

Optimal Results and Analysis 

Test Systems 

The performance of the selected algorithms was tested 

on different standards test systems IEEE 33-bus and 

69-bus RDSs which are represented in Figure 2. The 

first standard comprises total loads of 3715.00 kW and 

2300.00 kVar, also with 33 bus and 32 branches. The 

second standard comprises total loads of 3790.00 kW 

and 2690.00 kVar, also with 69 bus and 68 branches. 

Both of standards test systems operate with a nominal 

voltage of 12.66 kV. Each of both test systems’ buses is 

actually protected by an OCR, where it would be 

calculated for the first system 32 OCRs, and 68 OCRs 

for the second system. 
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Figure 2: Single diagram of test systems: a) IEEE 33-bus, b) 
IEEE 69-bus 

Comparison of Applied Algorithms 

The following results were obtained after applying the 

various recent algorithms on the two standards test 

systems RDSs to minimize the MOF, for a maximum 

iterations’ number of 150, and a population size equal 

to 10. In this paper is studied four cases (before and 

after the optimal allocation):  

Case 1: RDS without PVDG or DSVC.  

Case 2: RDS with PVDG only.  

Case 3: RDS with DSVC only.  

Case 4: RDS with hybrid PVDG and DSVC.  

Figure 3 represents the convergence curves when 

applying the different algorithms for the optimal 

hybrid PVDG and DSVC presence in both test systems 

RDSs. 

 

Figure 3: Convergence curves of algorithms for the 
PVDGDSVC integration in both RDSs: a) IEEE 33-bus, b) IEEE 
69-bus 

To clarifying the effectiveness and robustness of the 

selected recent algorithms when reaching the optimal 

solution for the previous formulated problem, their 

convergence characteristics were implemented and 

shown in Figure 3 for both standards test systems 

RDSs. It may be noted after analysing and comparing 

the obtained results, that all the algorithms showed a 

good efficiency in delivering suitable results of MOF 

minimization.   

Hence, the SMA was the best approach that provided 

the minimum value of the MOF for the optimal 

allocation of hybrid PVDG and DSVC units in both 

standards test systems RDSs. For the IEEE 33-bus RDS, 

the SMA minimized the MOF until a value of 59.828 
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and converges in less than 90 iterations when 

searching the optimal solution. For the IEEE 69-bus 

RDS, the  

SMA minimized the MOF until a value of 60.248 and 

converges in less than 80 iterations when reaching the 

optimal solution.  

Table 1 and 2, contain the optimized technical and 

economical parameters, also the the optimal 

allocation of hybrid PVDG and DSVC units in both 

standars test systems RDSs respectively, when 

applying the different algorithms.  

From Tables 1 and 2, it is revealed the effectiveness of 

all the applied algorithms in delivering good results for 

both test systems RDSs. Meanwhile, when basing on 

the comparison, it is obvious that the SMA was the 

best approach that provided the minimum of MOF 

when optimally allocated the hybrid PVDG and DSVC 

units into both RDSs. Besides, the SMA showed good 

efficiency in delivering even the minimum of most 

parameters (each by its own) for both systems. 

For the IEEE 33-bus RDS, the SMA minimized the TAPL 

until 16.209 kW and the TRPL until 12.110 kVar, with a 

PVDG and DSVC units’ cost of 10.894 M$ and 137.027 

k$, respectively. 

For the IEEE 69-bus RDS, the SMA also reduced the 

TAPL until 4.756 kW, the TRPL until 7.003 kVar and the 

TVD until 0.134 p.u. including a medium cost of PVDG 

and DSVC units of 9.586 M$ and 261.854 k$, 

respectively.   

The rest of algorithms could not overcome the SMA in 

delivering the minimum of MOF, nevertheless, 

delivered some minimum values of each parameter by 

its own. The ALO algorithm reduced the TVD until 

0.150 p.u. and the GOA delivered the minimum PVDG 

units’ cost of 8.074 M$ for the first standard RDS. 

Besides, the SSA gave the minimum PVDG units’ cost 

of 9.387 M$ and the WOA provided the PVDG units’ 

cost of 112.602 k$, for the second standard RDS.   

Tables 3 and 4 illustrate a statistical analysis for the 

utilized algorithms which applied to optimally 

integrate the hybrid PVDG and DSVC units into both 

test systems RDSs. 

Table 3: Statistical analysis of applied algorithms for the IEEE 
33-bus 

 𝑊𝑜𝑟𝑠𝑡 𝑀𝑒𝑎𝑛 𝐵𝑒𝑠𝑡 𝑆𝐷 
 CPU 
 Time 

 

𝑊𝑂𝐴 96.255 86.286 73.849 6.561 7.839 

𝑃𝑆𝑂 89.333 80.093 71.856 5.035 8.722 

𝐺𝑂𝐴 92.538 79.430 69.926 7.744 12.823 

𝐴𝐿𝑂 88.078 76.765 67.093 6.016 11.521 

𝑆𝑆𝐴 87.155 75.945 63.080 6.962 9.595 

𝑆𝑀𝐴 76.239 68.389 59.828 4.789 7.531 

Table 4: Statistical analysis of the applied algorithms for the 
IEEE 69-bus. 

 𝑊𝑜𝑟𝑠𝑡 𝑀𝑒𝑎𝑛 𝐵𝑒𝑠𝑡 𝑆𝐷 
 CPU 
 Time 

 

𝑊𝑂𝐴 96.875 86.745 74.401 6.700 14.152 

𝑃𝑆𝑂 89.595 80.378 70.765 6.140 18.051 

𝐺𝑂𝐴 91.252 77.183 68.430 5.795 16.945 

𝐴𝐿𝑂 88.535 75.463 66.563 6.798 17.668 

𝑆𝑆𝐴 85.645 75.005 63.133 6.280 14.260 

𝑆𝑀𝐴 72.932 65.817 60.248 4.223 13.387 

The statistical analysis-based Worst, Mean, Best, 

Standard Deviation (SD) and CPU Time, was carried out 

after 20 runs for each of the applied algorithms to 

prove their effectiveness and efficiency. Based on the 

analysis summary, which is mentioned in Tables 3 and 

4, it is clear that SMA showed a good efficiency in all 

sides of the statistical analysis for both test systems 

RDSs, by providing the Best and the smallest Worst 

MOF value, also the minimum MOF’s  

Mean and SD values, including the quickest CPU Time 

for its convergence characteristics when reaching the 

optimal solution.  

Performance of RDS Parameters 

Figure 4 demonstrates the comparison of the voltage 

profiles in the basic case, and the rest of the studied 

case optimal integration into both test systems RDSs 
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based on the optimal results obtained by the SMA 

approach. 

 

Figure 4: Voltage profiles of buses for RDSs: a) IEEE 33-bus, b) 
IEEE 69-bus 

The influence of all cases studies integration on the 

voltage profiles of both test systems RDSs is 

mentioned in Figure 4. The voltage was improved 

almost in every bus of both RDSs after all cases studies 

integration. Beside is noticed that superior results and 

a significant enhancement was achieved when 

integrating the case of hybrid PVDG and DSVC units 

into both RDSs. This impact and enhancement were 

related to the minimization of voltage deviation, as 

long as it indicates the value of RDS’s voltage and how 

much it is far from the nominal voltage value of 1 p.u.  

Figure 5 illustrates the effect of all cases studies’ 

optimal integration on the active power loss in each 

branch of both test systems RDSs. 

 

Figure 5: Active power losses in branches for RDSs: a) IEEE 33-
bus, b) IEEE 69-bus. 

Due to the structure of both the distribution systems 

which is radial, the active power losses are high in most 

of their branches, and that is why it is important to 

reduce them to attain many technical and economic 

advantages. As seen in Figure 5, the integration of all 

cases studies in both test systems RDSs, contributed 

excellently to reducing of the active power losses 

almost in each branch of both RDSs. The case of hybrid 

PVDG and DSVC units provided the best results of that 

minimization in each branch of both RDSs, if it delivers 

both of active and reactive powers. The integration of 

hybrid PVDG and DSVC units also reduced the TAPL 

from 210.987 kW until 16.209 kW for the IEEE 33-bus, 

and from 224.945 kW until 4.756 kW for the IEEE 69-

bus.  

Figure 6 demonstrates the difference between the 

primary overcurrent relays’ operation time at the basic 
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case, and after the rest of studied cases’ optimal 

integration for both RDSs. 

 

Figure 6: Overcurrent relay operation time for RDSs: a) IEEE 
33-bus, b) IEEE 69-bus. 

The main task of the overcurrent relays is to detect the 

fault current that occurs in the lines and do the quick 

isolation and protecting of the system. Minimizing the 

operation time of those OCRs is so beneficial 

technically (protect the system parts) and 

economically (extend the equipment’s lifetime).   

The optimal integration of all cases studies by the SMA, 

led to the minimization of the operation time in all 

OCRs installed in both standards RDSs, if it was one of 

the MOF parameters that should be minimized. Also, it 

is clear from Figure 6, that the hybrid PVDG and DSVC 

units’ integration was best case that occurs this 

minimization, also providing the reducing of the TOT 

from 20.574 seconds to 20.232 seconds for the first 

standard RDS, and from 38.772 seconds to 38.507 

seconds for second standard RDS.   

This impact was directly related to the increasing of the 

fault current which was affected by the improvement 

of voltage profile as mentioned in the Equation 27, 

where the more 𝐼𝐹  increases, the OCR will quick 

operate.   

Figure 7 represents the graphical comparison of active 

and reactive power losses including the minimum 

value of the voltage after each of the optimal studied 

cases integration for both standards RDSs. 

When analysing Figure 7, it may note that the 

minimum value of RDSs’ voltage kept raising 

proportionally while the reducing of the active and 

reactive powers after all cases studies’ optimal 

integration for both test systems RDSs. The best result 

for both terms of 𝑉𝑚𝑖𝑛  increasing and 𝑃𝑙𝑜𝑠𝑠  and 𝑄𝑙𝑜𝑠𝑠  

decreasing were provided by the case of hybrid PVDG 

and DSVC units’ optimal integration for both standards 

RDSs.   

The injection of active and reactive powers by the 

hybrid PVDG and DSVC units into both standards RDSs 

reduced the active and reactive power losses until 

16.209 kW and 12.110 kVar respectively, including a 

value of 𝑉𝑚𝑖𝑛  equal to 0.986 p.u. for the first test 

system, meanwhile, it reduced the active and reactive 

power losses until 4.756 kW and 7.003 kVar 

respectively, including a value of 𝑉𝑚𝑖𝑛 equal to 0.994 

p.u. for the second test system. 
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Figure 7: Comparison the power losses and minimum voltage: 
a) IEEE 33-bus, b) IEEE 69-bus. 

Conclusions 

This paper compared the effectiveness and 

performance of a recent metaheuristic optimization 

algorithms, which consecrated to solve the optimal 

allocation’s problem of various studied cases into 

standards IEEE test systems when minimizing the 

multi-objective functions.  

The results reveal that the SMA approach was 

successfully applied and implemented to solve the 

mentioned formulated problem, besides, it was the 

best approach among the rest of the algorithms that 

reached the optimal solutions. The SMA showed a 

good robustness and efficiency in delivering the best 

location and sizing of all cases studies with a quick 

convergence characteristic for both standards RDSs.   

The best choice that provided the best results of MOF’s 

minimization was the case of hybrid PVDG and DSVC 

units which led toward the best reducing of power 

losses, ameliorating voltage profiles by minimizing the 

voltage deviation until 0.194 p.u. for the first RDS and 

0.134 p.u. for the second RDS, enhancing the 

overcurrent protection system of both studied RDSs, 

also providing a reasonable operation and investment 

costs of both integrated units (PVDG and DSVC) all in 

simultaneously.  

Basing the previous discussions, it is recommended to 

widely integrate the hybrid PVDG and DSVC units into 

practical RDSs. Hence, the future work will be oriented 

and focus on optimally allocate and implement other 

units as the Battery Energy Storage Systems (BESS) in 

addition to the DSVC by applying newly optimization 

algorithms considering uncertainties of load demand 

and DGs output variation, to solve a complex MOF that 

includes various technical-economic indices to more 

improve the studied distribution systems. 
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Table 1: Optimization results of hybrid PVDG and DSVC for the IEEE 33-bus 

 
𝑃𝑃𝑉𝐷𝐺  in MW, 

 (Bus) 
 

𝑄𝐷𝑆𝑉𝐶  in MVar, 
 (Bus) 

 
 TAPL 
(𝑘𝑊)

 
 TRPL 
 (kVar) 

 
𝑇𝑉𝐷
 (p.u) 

 
 TOT 
(𝑠𝑒𝑐)

 
𝑇𝐼𝐶𝑃𝑉𝐷𝐺

(𝑀$) 
 

𝑇𝐼𝐶𝐷𝑆𝑉𝐶

(𝑘$)
 

𝐵𝑎𝑠𝑖𝑐 𝐶𝑎𝑠𝑒 210.987 143.128 1.812 20.574 − − 

𝑊
𝑂

𝐴
 

1.0343(10) 0.0871(3)       

0.8385(25) 0.0951(5) 24.431 18.230 0.418 20.271 10.324 228.601 

0.6954(31) 1.1669(30)       

𝑃
𝑆

𝑂
 

0.8149(6) 0.8018(7)       

0.6736(14) 0.0748(22) 23.704 18.169 0.233 20.235 9.295 147.053 

0.8237(30) 0.8732(30)       

𝐺
𝑂

𝐴
 

0.5060(11) 0.3748(13)       

0.4344(16) 0.4119(23) 24.158 17.053 0.185 20.230 8.074 178.372 

1.0680(29) 1.0312(30)       

𝐴
𝐿

𝑂
 

1.2065(6) 0.4407(12)       

0.6355(14) 0.9312(30) 20.941 15.804 0.150 20.225 9.775 129.811 

0.5897(31) 0.1118(33)       

𝑆
𝑆

𝐴
 

1.0018(11) 0.4793(12)       

0.4926(25) 0.8119(23) 19.590 13.912 0.282 20.245 8.906 140.720 

0.7211(31) 0.7677(30)       

𝑆
𝑀

𝐴
 

0.9363(11) 0.4706(12)       

0.8616(24) 0.9618(30) 16.209 12.110 0.194 20.232 10.894 137.027 

0.9121(30) 0.0544(32)       

Table 2: Optimization results of hybrid PVDG and DSVC for the IEEE 69-bus 

 
𝑃𝑃𝑉𝐷𝐷𝐺  in MW, 
 (Bus) 

 
𝑄𝐷𝑆𝑉𝐶  in MVar, 
 (Bus) 

 
 TAPL 
(𝑘𝑊)

 
 TRPL 

 (kVar) 
 

𝑇𝑉𝐷
 (p.u) 

 
𝑇𝑂𝑇
(𝑠𝑒𝑐)

 
 TIC 𝑃𝑉𝐷𝐺

(𝑀𝑆)
 

𝑇𝐼𝐶𝐷𝑆𝑉𝐶

(𝑘$)
 

𝐵𝑎𝑠𝑖𝑐 𝐶𝑎𝑠𝑒 224.945 102.139 1.870 38.772 −  − 

𝑊
𝑂

𝐴
 

0.3012(3) 0.5930(36)       

0.3444(14) 0.7499(61) 14.721 11.064 0.456 38.543 9.511 112.602 

1.7202(61) 0.5977(62)       
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𝑃
𝑆

𝑂
 

0.7441(12) 1.4956(9)       

0.4565(49) 0.2853(24) 12.031 7.610 0.259 38.500 11.733 635.001 

1.7181(61) 0.9544(61)       

𝐺
𝑂

𝐴
 

0.5336(9) 0.3103(12)       

0.5630(12) 0.2686(23) 9.782 8.990 0.237 38.517 10.658 237.800 

1.5546(63) 1.1521(61)       

𝐴
𝐿

𝑂
 

0.5682(14) 0.5434(11)       

0.3000(56) 0.0224(45) 9.110 8.591 0.208 38.501 9.867 272.503 

1.5864(62) 1.2149(61)       

𝑆
𝑆

𝐴
 

0.3000(25) 0.2875(24)       

1.7022(61) 0.0410(53) 6.893 7.903 0.171 38.511 9.387 254.802 

0.3329(68) 1.1993(61)       

𝑆
𝑀

𝐴
  

0.3721(18) 0.3291(10)       

1.6706(61) 0.2723(18) 4.756 7.003 0.134 38.507 9.586 261.854 

0.3418(66) 1.1884(61)       
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