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Abstract

Reactive power planning has attained a pivotal role for improved coordination in modern power system as minimization of
transmission loss is an essential criterion for secured power system operation. This article proposes a meta-heuristic nature
inspired Harris Hawk Optimizer (HHO) and Oppositional based Harris Hawk Optimizer (OHHO) algorithms which are
implemented on standard Ward hale 6 bus system and IEEE 30 bus system. The HHO is a derivative free algorithm and does
not exhibit any internal dependent parameters. Further, the search space is modified by hybridizing HHO with oppositional
based learning technique in order to achieve enhanced approximation for the prevailing solution and the OHHO is proposed
in the current work for minimization of transmission losses, operating cost and enhancement of voltage profile at the buses.
The influence of updating mechanism of the optimizers is investigated with respect to the objective functions. The work
majorly focuses on the constraints like reactive power generated by generator buses, shunt capacitors and transformer tap
changing position. The simulation results obtained on standard test systems manifest the improved performance of
proposed HHO and OHHO in comparison with the other optimization techniques that have emerged in the recent state-of-
the-art literature.

Keywords: Harris Hawks Optimizer (HHO), Oppositional based Harris Hawk Optimizer (OHHO), transmission loss; operating
cost; reactive power planning

Introduction

Power systems play a major role in generation,
transmission and distribution. Power is
transmitted over a long distance in a large
interconnected power system which is to be
operated and controlled. The modern power
system control is broadly categorized into
optimal power flow and reactive power
planning. The reactive power planning (RPP) is
the allocation of VAR sources based on location
and size. The allocation of VAR sources is based

on the optimization techniques or methods in
RPP. The major objectives which are considered
in RPP are as follows: minimization of active
power loss, reactive power loss, operating cost
and improvement of voltage profile in each bus
by controlling transformer tap changing
position, reactive power, voltage constrain and
shunt capacitors.

The work proposed in [1] determines control
variable settings using a differential evolution
(DE) algorithm for reactive power dispatch in
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power system planning. The particle swarm
optimization (PSO) technique in [2] determines a
reactive power allocation strategy with
continuous and discrete state variables. The
passive power filters and hybrid active power
filters are designed to satisfy the requirements
of harmonic filtering in [3] and the particle
swarm optimization algorithm was adopted for
reactive power compensation. A flexible
compensation method for economy, security
and practicality is discussed in [4] using multi-
scenario operations and reactive power division.
A multi-level methodology is designed by
incorporating fast voltage stability index device
in [5] using differential search algorithm
technique for reactive power planning. In this
paper [6] a formulation method is described for
the placement of capacitor at different levels
using non differential objective function. By
using  general solution algorithm-based
simulated annealing in [7] the optimal capacitor
placements in distribution systems are
proposed. Optimal reactive power dispatch
problem using seeker optimization algorithm is
discussed in [8] and compared with different
methods of genetic algorithms and differential
evolution optimization, also using conventional
nonlinear programming method. A bicriterion
reactive power optimization model based on
successive  quadratic programming (SQP)
methods is proposed in [9] compromising
between economical and security objective
functions. An ordinal optimization-based
approach containing upper and lower level is
described and developed in [10] for reactive volt-
ampere sources problem. The proposed method
describes a full AC formulation of the
optimization problem in [11], and is solved by
implementation of the Newton method using
interior point which is developed for the optimal
power flow. In this paper [12], Kriging assisted
genetic algorithm (KAGA) and a Kriging assisted
particle swarm optimization (KAPSO) are the
techniques developed to improve the
performance of evolutionary based computation
for solving optimal power flow. Authors have
implemented black hole algorithm in [13] and
glowworm swarm optimization [14] technique to
solve the optimal power flow problem in the

connected power systems network. The author
describes particle swarm optimization (PSO)[15],
aging leader and challengers (ALC-PSO) [16],
gravitational search algorithm (GSA) [17], hybrid
Nelder-Mead simplex- firefly algorithm (HFA)
[18], biogeography based optimization (BBO) [19],
opposition based gravitational search algorithm
(OGSA) [20], for optimal reactive power flow
with one or more objective of minimizing the
active power losses for fixed generation
schedule. The control variables are generator
bus voltages, transformer tap settings and
reactive power output of the compensating
devices placed on different bus bars. The
proposed method describes the comprehensive
learning particle swarm optimization (CLPSO)
[21], differential evolution (DE) [22] in which is
implemented to minimize the real power losses,
voltage profile improvement and voltage
stability. Reactive power planning is performed
in [23-26] by controlling VAR sources like
reactive power generation, shunt capacitors,
transformer tap positions by using evolutionary
algorithms.  Voltage controlled  series
compensator has been adopted by authors in[27-
28] for improving the voltage profile and reduce
the transmission loss. Plant growth simulation
algorithm has been applied for controlling
reactive power in [29]. The oppositional based
learning is a learning based concept and first
introduced by authors in [30]. The major existing
algorithms like PSO, DE, GA, HFA, BBO and GSA
etc. depend on some of the internal parameters
like weight and acceleration factors, which are
tobe adopted very cautiously. Technique of HHO
ensures adaptable establishment between
exploitation and exploration to intensify global
search ability of the proposed algorithm which
does not depend on any of the internal
dependent parameters. Also, the HHO algorithm
is a derivative free algorithm which can be
ratified easily. This unique feature of HHO
algorithm has motivated the implementation in
reactive power planning problem. The research
work proposes the implementation of a
metaheuristic algorithm of Harris Hawks
Optimizer and Oppositional Harris Hawk
Optimizer, which focuses on the reactive power
planning. The core idea of optimization
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technique is to obtain the minimized
transmission loss, operating cost and to
maintain healthy voltage profile at each bus. The
research paper initiates with the introduction,
mathematical problem formulation, the
proposed Harris Hawk algorithm works for
better optimization of the objectives mentioned
in the problem formulation, followed by
simulation, result and conclusion.

Mathematical problem formulation

The key of reactive power planning is the
optimal allocation of reactive power sources
considering the locations. In recent works these
locations are rigorous optimization-based
methods by wusing the VAR sources. The
important role of reactive power is
optimization. i.e., to minimize the active power
loss of all the VAR sources in the system. Also,
the optimization must be done with respect to
the operating cost and improve the voltage
deviation in the system. Apart from this, the
objective is to reduce the cost of the shunt
capacitors.

Minimize active power loss

To minimize the active power loss in
transmission lines it can be formulated as
below:

P, = Gmn [ 1r2L + V2 - 2V, Vycos(6y, — 65)] (1)

Where,

Pioss is active power loss, g. is conductance of
branch “n” which is connected between x* and
y™ bus,

Vm is the voltage magnitude of m™ bus,

V., is the voltage magnitude of n* bus,

8 m is the voltage phase angle of m™ bus,

8 » is the voltage phase angle of n™ bus
respectively.

Minimize operating cost:

To minimize the operating cost in transmission
lines it can be formulated as below (2).

Total operating cost = Senergy* Scap
Where,
Sknergy 1S the cost due to the loss of energy,

Scap is the cost of capacitors installed at the
nodes which are weak.

(2)

Cenergy = Pioss X Energy rate
Energy Cost = 0.06$/kwh,
Cost of Capacitor /KVAR = 3§,

Cost of capacitor installed = 1000S, some of the
cost data is collected from [4-5].

Energy rate = 0.06 x 100000 x 8760
Improvement of voltage profile:

The enhancement of voltage profile can be
formulated by minimizing the deviation of the
load voltages. The objective function for the

same is formulated as below,
n

Minimize, VD = X2 Vi — Vipecifiea (3)
Where ny is the total number of bus,

Vpecitiea 1S the specified bus voltage i.e. 1.0

The above-mentioned problem formulations
needed to be optimized by satisfying all the
equality constraints and inequality constraints
as mentioned below:

(i) Equality constraints

The load flow equation for equality constraints
are illustrated as follows:

PGm - PDm - Vm 21;1 V;l[Gmn COS(5mn) +
B Sin(amn)] =0,

N=1,2,3...., Nb (4)

QGm - QDm - Vm 21;1 V;l[Gmn COS(5mn) +

an Sin(amn)] =0,
(5)

np, = number of buses,

Pom =Active power generation at the m™ bus,
Qom = Reactive power generation at the m*™ bus,
Ppm = Active power demand at the m*™ bus,

Qon = Reactive power demand at the n" bus,
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Gmn = Transfer conductance between m™ bus and
n bus,

Bmn = Transfer susceptance between m™ bus
and n* bus, respectively.

(ii)
The inequality constraints include generator
voltage magnitude, reactive power output by
generator buses, shunt capacitors

and transformer tap positions. The boundary
limits of these constraints must be satisfied.

Inequality constraints

. \
Veam =<V, =V~
o <P <SPS |
o <0, <Oon
<O <ol

min max
]-;n = Tm = Tm

Harris Hawk algorithm for proposed work

The Harris Hawks Optimizer is a stochastic
optimization algorithm which has been
developed to solve any kind of optimization
problems. This unique nature-inspired,
population-based, gradient-free optimization
algorithm is proposed by Heidari.et.al [31] which
mimics the behavior and chasing style of prey in
nature by Harris hawks. Harris Hawks
optimizer can be designed mathematically,
where the angling (hunting) behaviors can be
modeled in two phases namely exploratory and
exploitative.

1) Exploration phase

In this section, the exploration phase of HHO is
proposed. Harris hawks detect their prey with
their powerful eyes depending upon the
position of the prey, they are divided into two
different approach methods. Which is modelled
as follows

Z(iter + 1) = (Z, (iter) — Z, (iter)

- (LB + n,(UB—LB)) (7)

Z(iter + 1) = Z,qnq (iter) — rl(Zmnd (iter) —

21, Z(iter)) (8)

Z(iter) is the current location of hawks and Z
(iter+1) is the wvector location for the next
iteration. Zc(iter) is the position of the prey.
Zrand(iter) is the random selected hawk from
the current population. ry, r;, rs and rs are the
random numbers which are used to enhance and
transform the exploration in the search area, LB
and UB are the lower and upper bounds of
search area. The average position of hawks is
obtained using the expression

Z,(iter) = %ZM_ Z; (iter) 9

Where Z{iter) is the position of each hawk and
M is the total number of hawks.

The HHO algorithm can be transformed from
exploration phase to exploitation phase. In this
phase the behavior of the prey is based on its
escaping energy. The escaping energy of the
prey is modelled as

t
E—2E (1-3)

Where E; is the initial energy stage of the prey
which lies in the interval between-1to 1, T is the
maximum number of iterations, t is the current
iteration.

2)
The transformation from exploration to
exploitation phase is to achieve the surprise
pounce of Harris hawks by attacking its prey
which was identified in the exploration phase.
The hawks encircle the prey either hardly or
softly depending upon the energy of the prey
retained. As the prey starts losing more energy,
the hawks enhance to encircling process to
smoothly catch frazzled prey. For portraying
this approach, the HHO switches between soft
and hard besiege process. The energy parameter
E is categorized for different steps as follows:

Exploitation phase

Step 1: Soft besiege

4
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When r>0.5 and E 0.5, where the rabbit still has
sufficient energy to escape by its misleading
jumps, but it cannot escape finally. In this step
the hawks encircle its prey softly to exhaust its
left-out energy and then it performs its surprise
pounce. This nature of hawk is modelled by
below mentioned rules.
Z(iter + 1) = AZ (iter)
— E[jZ.(iter) — Z(iter)] (10)
AZ (iter) = Z (iter) — Z (iter) (11)

Where A Z (iter) is the position vector of the
prey and the current location in iteration t, rs is
the random number inside (0, 1), ] = 2(1 - rs) is the
misleading jump strength during the escaping
process. The value of ] changes in each iteration
randomly to mimic the nature of rabbit motions.

Step 2: Hard besiege
When r 2 0.5 and |E|<0.5, where the rabbit is

exhausted and has much less escaping energy.

Z(iter + 1) = Z_.(iter) — EAZ (iter) (12)

Step 3: Soft besiege with progressive rapid dives

When r<0.5 and [E| 2 0.5, the rabbit
acknowledges to still have energy to escape
strongly. So, the hawks make the move to
quagmire it effectively and dive towards the
rabbit. Based on the next move it can be
modelled as

Y = Z_.(iter) — E[jZ (iter) — Z(iter)] (13)

A=Y +5 xLF(D) (14)

Where, D is the dimension of search space, S is
the randomly selected vector of dimension 1D.
LF (D) is the levy flight function

{ Y iff FI(YXF(X(1)
Aif F(AXF(X(1)

X(@+1)= (15)

Step 4: Hard besiege with progressive rapid
dives

When r<0.5 and |E|<0.5, the rabbit loses its
complete energy to escape and the hawks
construct a surprise pounce and reduce the
distance between them and finally kill the
rabbit. This situation of the prey is similar to the
soft besiege with the decreased distance for the
escaping rabbit.
Y = Z.(iter) — E[jZ (iter) — Z,(iter)] (16)

3.1 Oppositional based learning
Oppositional based learning (OBL) is a new
machine learning strategy introduced by
HR.Tizhoosh [30] for intensifying the
convergence speed of diversified heuristic
optimization techniques. The implementation
of OBL implicates interpretation of current
population and opposite population to obtain an
enhanced candidate solution of the given
problem in the same generation. The concept of
OBL is wused in several metaheuristic
optimization technique to intensify the
convergence speed.
The OBL concept of opposite number is
explained as follows:
Let A (A € |m,n|) be areal number
The opposite number A°is defined as

A =m+n-A4A
For d- dimensional search area, this equation
can be further extended as

o

Ai=mi+ni+Ai

Where A, A, Ay be the point in d-
dimensional search area.

(4; € |my,ml)

Where;i=(1,2,3 ---——- d)

The approach of OBL is used in the initialization
process and in every iteration using the
generation jump rate Jr, for any oppositional
based optimization.
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Figure I: Flow chart for the proposed work

4, Result and discussions

For the purpose of verifying the performance
and efficiency of proposed OHHO and HHO
techniques, tests are carried out on Ward Hale 6
bus system and IEEE 30 bus system. All the
simulations are carried out by using MATLAB
2013b, computed on core (Tm) i5-3520M CPU
with 2.9GHz and 8GB RAM. For establishing the
superiority of the proposed algorithms 30
independent trial runs are performed for all the
test cases with a comparative study reported in
the following section. Figure 1 above provides
the flowchart of the proposed work.

4.1 Case study of Ward Hale 6 bus system

The Ward Hale 6 bus system consists of three
generating units at buses 1, 2 and 3
interconnected with 7 transmission lines of
which two branches (3-5 and 4-6) are equipped
with tap changing transformer. This is
considered as test system 1. Bus 1 is selected as
the slack bus. The total demands of this test
system are Pioag=2.1p.u. and Qieae=2.1 p.u. at 100
MVA base [29]. Figure 2 depicts the Ward Hale 6
bus line diagram. For the test system considered
shunt VAR sources are placed at the 10th bus
and thereafter, HHO and OHHO techniques are
implemented in order to minimize transmission
loss as well as operating cost. Table 1 presents
the optimal setting for system constraints.

©
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Figure 2: Ward Hale 6 bus test system used for study
[29]
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Table 1: Optimal sizing of VAR sources for Ward Hale
6 bus system

Control Minimum _ _ . Maximum
. Initial Proposed
variables 29] HHO OHHO
(p-u.)
Tap (3-5) 0.9 1.010 09861 1.0 1.1
Tap (4-6) 0.9 1.01 09862 1.0 1.1
VG (1) 0.95 1.05 1.0822 1.10 1.1
VG (2) 0.95 1.125 1.0822 1.10 1.1
VG (3) 0.95 1.07 1.0822 1.0869 1.1
QC(10) 0.0 0.939 0.0258 0.0405 0.05
Transmission Loss
(MW) 10.250 05.34 05.18
Total Operating
5.38742.8086 2.7223

Cost x10° ($)

It can also be observed that all the control
variables are within the permissible limits and
are satisfying inequality constraints. It is also
verified that with implementation of the
proposed methods the total transmission line
loss is reduced by 47.9% using HHO and 49.46%
by OHHO. It is also observed that the system
operating cost which is a crucial parameter for
optimal planning is 2.8086x106 and 2.7223x106
by HHO and OHHO techniques respectively.
There is a significant reduction in operating cost
by 49.551% by hybridizing oppositional based

with respect to the initial cost of operation.
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Figure 3: Convergence curve for transmission loss of
Ward Hale 6 bus system.
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Figure 5: Magnitude of voltage in each bus of Ward
Hale 6 bus system

The variation of transmission loss at all the
buses is represented by the convergence curve
as given by figure 3. The total active power loss
by implementing HHO is 0.0534 p.u. and is
further diminished to 0.0518 pu. by
oppositional HHO technique. There is a
considerable reduction from base case loss
value of 0.1025 p.u. using both the optimization
algorithms. Similarly, figure 4 provides the
convergence curve for total system operating
cost wherein OHHO algorithm depicts
considerable reduction thus leading to optimal
and secured reactive power dispatch. Figure 5
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depicts the voltage profile at all the buses for
base case, with HHO and OHHO optimization. It
is candidly observed that the voltage profile
improvement has occurred by both the
techniques but OHHO generates the best
results. The voltage profile also depicts that the
voltage at all buses are within the prescribed
limits with average value using HHO and OHHO
- 1.056 p.u. and 1.0675 p.u. respectively.

4.2 Case study of IEEE 30 bus system

The modified 30 bus system consists of six
generating units at buses 1, 2, 5, 8, 11, 13 and 24
buses interconnected with 41 transmission lines
of which four branches (6-9, 6-10, 4-12 and 28-
27) are equipped with tap changing transformer
and nine branches having shunt VAR
compensators at buses (10,12,15,17, 20, 21, 23,24
and 29). Bus 1 is selected as the slack bus. The
total real and reactive power demand of this
test system are 2.834pu and 1262 p.u. at
100MVA base respectively. All the load data,
line data and initial values of control variables
may be found in [16].

For the test system considered shunt VAR
sources are placed at the 10, 12, 15, 17, 20, 21, 23,
24 and 29th buses and thereafter, HHO and
OHHO techniques are implemented in order to
minimize transmission loss as well as operating
cost. The tap setting, voltage and var setting
have been closely set within the limits
satisfying all the required inequality
constraints. Table 2 shows the optimal setting
for system constraints. It is also verified that
with implementation of the proposed methods
the total line loss is reduced by 46.82% using
HHO and OHHO. It is also observed that the
system operating cost which is a vital aspect for
optimal planning is 1.6260x106 by HHO and

1.6222x106 by OHHO. There is a significant
reduction in operating cost by 46.886% by
hybridizing oppositional based learning with
Harris Hawk algorithm from initial system cost.
The convergence curve for transmission loss at
all the buses is represented by Figure 6. The
total active power loss obtained is receded by
0.0309 p.u. using HHO and oppositional HHO
technique. There is an appreciable reduction

from base case loss value of 0.05811 p.u. using
both the optimization algorithms. Similarly,
Figure 7 gives the convergence curve for total
system operating cost wherein OHHO
algorithm depicts considerable reduction thus
leading to optimal and secured reactive power
dispatch. Figure 8 illustrates the voltage profile
at all the buses for base case, with HHO and
OHHO optimization. It is honestly observed
that the voltage profile improvement has
occurred by both the techniques but OHHO
generates the best results. Figure 9 provides the
comparative analysis of the transmission real
power loss minimization with other
optimization techniques as published in
literature. The proposed work is compared with
12 algorithms implemented in a similar problem
of optimal reactive power dispatch. The
proposed algorithms of HHO and OHHO have
generated superlative results considering
transmission loss along with appreciable
reduction in operating cost as an additional
parameter. The proposed work is further
extended in maintaining voltage consistency
with average value using HHO and OHHO are
1.0918 p.u. and 1.0889 p.u. respectively. Hence,
this justifies the robustness of the algorithm in
handling large interconnected power system

problem.
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Figure 6: Convergence curve for transmission loss of
IEEE 30 bus system
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Table I: Optimal sizing of VAR sources for IEEE 30 bus system

Control variables Initial [19] ABC [17]FA [17] (‘BPIS]O DE [22] }[IlFS‘]" GSA [17] 0[(2;(?]"" AL[(i’Gl;SO I‘Ef}‘? C[IgI]A I‘?ﬂ?o IT};A HHO P(';g’fféd
Tapn, p-u. 1.078 0.97 1 09154 1.0465 0980051 1.098450 1.0585 09521 09541 09916 10314 10442 09881  0.9879
Tapr2, p.u. 1.069 1.05 094 09 09097 09500210.982481 09089 10299 1.0412 09538 09581 09119 09881  0.9879
Tapis, p-u. 1.032 0.99 1 0.9 09867 0970171 1.095909 1.0141 09721 09514 09603 09698 09883 09881  0.9879
Tapss, p.u. 1.068 099 097 09397 09689 0970039 1.059339 1.0182 09657 09541 09670 09777 09821 09881  0.9879
Ve, pu. 1.05 1.1 1.1 1.1 1.1 11 1.071652 10500  1.0500 1.0500 10500 1.0825 1.0797 110 1.10
Ve, pu. 1.04 1.0615 10644 1.1 10931 1.0543321.022199 1.0410 10384 10381 10473 10641 10621  1.10 1.10
Vs, p.u. 1.01 1.0711 1.07455 1.0795 10736 1075146 1.040094 1.0154 10108 10110 10293 10332 10333  1.10 1.10
Ves, p-u. 1.01 1.0849 1.0869 1.1  1.0756 1.0868851.050721 1.0267  1.0210 10250 10350 10374 10362 110 1.10
Ve, p.u. 1.05 1.1 109164 1.1 1.1 11 0977122 1.0082  1.0500 1.0500 10500 10819 10621 110 1.10
Vi3, p.u. 1.05 10665 1099 1.1 1.1 1.1 0967650 1.0500  1.0500 1.0500 10500 10398 10544 110 1.10
QCuo, pou. 0 5 349265 5 4700304 1.653790 0.0330 00090 00089 00092 49797 435972 005 0.05
QC12, p.u. 0 5 4 5 5 4706143 4372261  0.0249 00126 00000 0.0000 22098 25990 005 0495
QCis, p.u. 0 5 33 5 5 4700662 0.119957 0.0177  0.0209 00141 00153 49254 50 005  0.0241
QCr7, pou. 0 5 35 5 5 230591 2.087617 0.0500  0.0500 004989 00497 46838 38280  0.05 0.05
QCx, p.u. 0 39 5 4406 480352 0357729 0.0334  0.0031 00314 00302 29661 43910 .05 0.05
QCx, p.u. 0 33 32 5 5 4902598 0.260254 0.0403  0.0293  0.0345 00500 49994 50 005 0.05
QCa, p.u. 0 0.9 1.3 5 2.8004 4.8040340.000000 00269 00226 00241 00134 36618 21225 005  0.044
QCa, p.u. 0 5 35 5 5 4.805296 1383953 0.0500  0.0500  0.0500 0.0500 48890 5. 0.05  0.0407
0Ca, p.u. 0 24 142 5 2.5979 3.3983510.000317 0.0194 00107 00107 00121 28936 33295 005  0.0421
Pioss, MW 5811 4.6022 45691 45615 4555 4529 4514310 44984 44793 36500 3.2400 3.0948  3.0932  3.09 3.09

Total Operating

3.0542 Not Reported 1.6260  1.6222

Cost x10°($)

21155
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Table 3 depicts the statistical analysis which
provides a significant relevance for assessing
the performance of the proposed algorithms.
The algorithms are run for a maximum of 30
trials and the number of times the solution was
generated is sufficiently high which proves the
computational efficiency. Also, the iterations
per second justifies the computational speed of
the proposed algorithms.

Conclusion

In the proposed work, one of the recently
improved meta-heuristic algorithms has been
applied in solving voltage constrained reactive

constraints in the test power system. In this
study, different objective functions were
considered like minimization of operating cost,
minimization of transmission loss and
improvement of voltage profile in each bus. The
proposed OHHO and HHO has been investigated
successfully in Ward Hale 6 bus and IEEE 30 bus
system. The simulation results have proved
robustness and superiority of the proposed
approach to solve RPP problem. The results are
compared with other evolutionary optimization
techniques as published in literature and justify
the potential of the algorithms to generate
accurate solution for large interconnected
power networks.

power planning problem while satisfying all the
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