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Abstract 

The article investigates the steady state flow of an incompressible 

fluid which is treated as a Williamson fluid through a stenoised 

region in the shape of cosine constriction. Blood is taken as a 

Williamson fluid. Mathematical formulation leads us to nonlinear 

compatibility and energy equations, which are then deciphered by 

the shooting technique to obtain the numerical solution. Suitable 

resemblance transformations are used to change partial differential 

equations into an embellished form of ordinary differential 

equations. Further, the consequences of the different parameters 

involved are shown by graphs and a conclusion is presented. Velocity 

and temperature fields are canvassed graphically for the distinct 

values of emerging parameters and discussed in tabular form. Skin 

friction and the coefficient of heat transfer are also covered in the 

discussion. The resulting Nusselt number curve exhibits negative 

deflection for variational values of λ and height of the stenosis δ. 

Introduction 

Arterial opacity is a widespread medical problem in 

humans, with atherosclerosis being a leading cause of 

myocardial infarction and angina. In a coronary artery, 

occlusion of a partial or total circulatory reduces the 

supply of blood to the vascular wall and, due to the 

buildup of plaque with lipid core and a fibrovascular 

cap, the heart experiences inflexibility and stiffness, 

which raises the probability of a heart attack. 

Understanding blood flow in tapered tubes is essential 

as the taper of the tube is a principal factor in the 

development of pressure. Arteries may experience 

narrowing due to the accumulation of substances. 

These attenuate the artery because blood circulates at 

high pressure. R. Ellahi et al. [1] studied the flow of 

blood with suspension of nanoparticles through 

arterial stenosis. S. Nallapu et al. [2] investigated blood 

flow in the presence of a magnetic field through 

narrow tubes. Chemical reaction and heat influences 

on blood flow through narrow arteries is presented by 

N. Akbar et al. [3]. Sharma et al. [4] analyzed the 

Jeffrey-Fluid model of blood flow in tubes. Cheng and 

Michel [5] studied the flow of non-Newtonian fluids 

flow through a stenoised channel. Azhar et al. [6] 

discussed blood flow with transfer of heat in stenosis. 

Moreover, in most of the studies, the flow of blood is 

considered to be Newtonian. The assumption of 

Newtonian response of blood is for high shear rate 

flow, i.e., flow through the arteries of large areas. It is 

not valid when the shear rate is low, as in the flow in 

arteries of small areas and downstream of the stenosis. 

In some diseased conditions, blood shows important 

non-Newtonian properties since experiments proved 

that mostly biological fluids show non-Newtonian 

rheology characteristics. The wide range of application 

of non-Newtonian fluids in industry has attracted 

much research interest [7–16]. Nadeem and Akbar [17] 

analyzed the results of variable viscosity in peristaltic 

Jeffrey-six constant fluid flow in a vertical tube. In non-

Newtonian fluids various fluids models are presented, 

known as second grade fluid, Walters B fluid, PTT fluid, 

Sisko fluid, Williamson fluid etc. A literature review 
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revealed that Williamson fluid has been investigated 

by many researchers over a long period of time. 

Motivated by the above-mentioned significance of the 

fluid and flow geometry, we present our study of 

steady state flow of a Williamson fluid model through 

stenosis. The numerical method is used to obtain the 

governing non-linear system along with boundary 

conditions. Graphical and tabular results are presented 

for velocity and temperature fields and discussed in 

depth. The literature does not seem to contain a single 

study that deals with the flow of a steady state 

Williamson fluid model through a stenoised channel. In 

this exploration, we examine the steady, 

incompressible flow of a Williamson fluid model 

through a stenoised region. The introduction is 

presented in the first section. In the second section 

governing equations are explained in detail. In section 

three the physical formulation of the problem is 

explained. Section four sets out the numerical solution 

of the presented problem with the assistance of the 

shooting technique. A discussion about the results of 

distinct monumental parameters on velocity and 

temperature fields is given in section five. Concluding 

remarks on this investigation are presented in the last 

section. 

Governing Equation  

The basic governing equations of an incompressible 

fluid flow are continuity equation, conservation of 

momentum and energy equation: 

 ∇⃗⃗ ⋅ 𝑉⃗ = 0 (1) 

 𝜌
𝑑𝑉⃗ 

𝑑𝑡
= ∇⃗⃗ ⋅ 𝜏 + 𝜌𝑏 (2) 

 𝜌𝑐𝑝

𝑑𝑇

𝑑𝑡
= 𝑘∇2𝑇 + 𝜙 (3) 

 𝜙 = 𝜏 ⋅ ∇𝑉 (4) 

where  𝑉  is the velocity vector and  𝜌  constant density 

of fluid 𝑏  the body force and  
𝑑

𝑑𝑡
  material time 

derivative. 

The constitutive equation for Cauchy stress tensor 𝜏

 for a Williamson fluid is defined as: 

 𝜏 = −𝑝𝐼 + 𝑆 (5) 

where 

 𝑆 = [
𝑠𝑥𝑥 𝑠𝑥𝑦

𝑠𝑦𝑥 𝑠𝑦𝑦
] (6) 

and 𝑝  is pressure, 𝐼  the identity tensor and the 

constitutive equation for extra stress tensor  𝑆  is given 

below: 

 𝑆 = (𝜇∞ +
(𝜇0 − 𝜇∞)

1 − Γ𝛾̇
) 𝐴1 (7) 

where 

 𝛾̇ = √
Π

2
, Π =

1

2
𝑡𝑟𝑎𝑐(𝐴1

2) (8) 

Problem formulation  

In the current problem, the steady state flow of a 

Williamson fluid through a stenoised region is 

considered. 

 

Figure 1: Geometry of the flow problem 

For incompressible fluid the continuity equation 

becomes: 

 
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0 (9) 
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The governing momentum equation may be 

expressed as: 

𝜌 (𝑢
∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
) = −

∂𝑃

∂𝑥
+

4𝜇0
∂2𝑢

∂𝑥2 (1 + Γ√(
∂𝑢

∂𝑥
)
2
+

1

2
(
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)
2
)

+𝜇0 (1 + Γ√(
∂𝑢

∂𝑥
)
2
+

1

2
(
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)
2
)

× (
∂

∂𝑦
(
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
) +

∂2𝑢

∂𝑦2)

  (10) 

𝜌 (𝑢
∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
)  = −

∂𝑃 

∂𝑦
+

𝜇0
∂

∂𝑥
(
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)(1 +

Γ√(
∂𝑢

∂𝑥
)
2
+

1

2
(
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)
2
)  

(11) 

The energy equation takes the form: 

𝜌𝑐𝑝 (𝑢
∂

∂𝑥
+ 𝑣

∂

∂𝑦
)𝑇 =

𝑘 (
∂2

∂𝑥2 +
∂2

∂𝑦2)𝑇 − 𝑝 (
∂𝑢

∂𝑥
) +

𝜇0 (1 + Γ√(
∂𝑢

∂𝑥
)
2
+

1

2
(
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)
2
)

(2(
∂𝑢

∂𝑥
)
2
+ (

∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)
2
)

  (10) 

where 𝑐𝑝 represents the specific heat of fluid. 

Under the above conditions the boundary layer 

equations for steady incompressible flow toward a 

stenoised region can be expressed as: 

 𝑢
∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
= 𝜈 (

∂2𝑢

∂𝑦2) [1 +
Γ

√2
(
∂𝑢

∂𝑦
)]  (11) 

 −
1

𝜌

∂𝑝

∂𝑦
= 0  (12) 

 
𝑣

∂𝑇

∂𝑦
=

𝑘

𝜌𝑐𝑝

∂2𝑇

∂𝑦2 +
𝜈

𝑐𝑝
[(

∂𝑢

∂𝑦
)
2
+

Γ

√2
(
∂𝑢

∂𝑦
)
3
]  

(13) 

The proper boundary conditions are: 

    
𝑢̃ = 𝑣̃ = 0,  𝑇̃ = 𝑇1   at 𝑦̃ = ℎ(𝑥̃),

∂𝑢̃

∂𝑦̃
= 0,      

∂𝑇̃

∂𝑦̃
= 0       at 𝑦̃ = 0

  (14) 

The following relations for 𝑢 and 𝑣 are introduced: 

 𝑢 =
∂𝜓

∂𝑦
, 𝑣 = −𝛿

∂𝜓

∂𝑥
,  (15) 

here 𝜓  is the stream function. 

For relations in (13), equation (2) is satisfied 

automatically and the equations (3—4) take the 

following form: 

 

∂𝜓

∂𝑦

∂2𝜓

∂𝑥 ∂𝑦
− 𝛿

∂𝜓

∂𝑥

∂2𝜓

∂𝑦2 = 𝜈 (
∂3𝜓

∂𝑦3) [1 +

Γ

√2

∂2𝜓

∂𝑦2].  
(16) 

The boundary conditions reduced to: 

 𝜓 =
1

2
 at 𝑦 = 𝑓, 𝜓 = 0 at 𝑦 = 0  (17) 

 
−𝛿

∂𝜓

∂𝑥

∂𝑇̃

∂𝑦̃
=

𝑘

𝜌𝐶𝑝

∂2𝑇̃

∂𝑦̃2 +
𝜈

𝑐𝑝
[(

∂2𝜓

∂𝑦2)
2

+

Γ

√2
(
∂2𝜓

∂𝑦2)
3

]  

(18) 

The dimensionless variable for the stream function is 

introduced as: 

 𝜓 = √𝑎𝜈𝑥𝑓(𝜂) (19) 
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where 𝜂 = 𝑦
√𝑎

𝜈
  is the similarity variable. 

By using equation (14), equations (6—11) finally take 

the following form: 

 𝑓′′′ (1 +
𝜆

2
𝑓′′) + 𝛿𝑓′′𝑓 − 𝑓′′𝑓′ = 0  (20) 

Next, the non-dimensional temperature 𝜃 is shown as: 

 𝜃(𝜂) =
𝑇−𝑇0

𝑇1−𝑇0
.  (21) 

Using (17), (20) and the similarity variable, equation 

(16) reduces to: 

 𝜃′′ + 𝛿 Pr 𝜃′𝑓 + (1 +
𝜆

2
𝑓′′)𝐴𝜃𝑓′′2 = 0  (22) 

where 

Pr =
𝐶𝑝𝜇

𝑘
, 𝐴 =

𝜇𝑎2𝑥2

𝑘
, 𝜆 = Γ𝑥√

2𝑎3

𝜈
, 𝜈 =

𝜇

𝜌
 (23) 

The heat transfer and skin friction coefficient of the 

flow field are also obtained. 

Numerical Solutions 

By using the similarity transformations, the governing 

equations are transformed into ODEs with the 

cooperation of appropriate conversions. The 

mathematical result of these equations is found by the 

implementation of the shooting technique along with 

the Runge-Kutta method with suitable boundary 

conditions. Velocity and temperature fields are 

elaborated to indicate the consequences of the 

pertinent parameters. The Runge-Kutta method is 

used to resolve the initial value complications. So, we 

convert (20) and (22) equalities in first order form 

 𝑓′′′ =
1

(1+
𝜆

2
)
(−𝛿𝑓 + 𝑓′)  (24) 

 𝜃′′ = −𝛿 Pr 𝜃′𝑓 − (1 +
𝜆

2
𝑓′′)𝐴𝜃𝑓′′2   (25) 

 
𝑓 = 𝐼1,  𝑓

′ = 𝐼2,  𝑓
′′ = 𝐼3,  𝑓

′′′ = 𝐼3
′ ,

𝜃 = 𝑐4, 𝜃′ = 𝐼5,  𝜃
′′ = 𝐼5

′   
(26) 

We get the new ordinary differential equations 

 𝐼1
′ = 𝐼2, 𝐼2

′ = 𝐼3, 𝐼4
′ = 𝐼5  (27) 

 𝐼3
′ =

1

(1+
𝜆

2
)
(−𝛿𝑓 + 𝑓′)  (28) 

 𝐼5
′ = −𝛿 Pr 𝜃′𝑓 − (1 +

𝜆

2
𝑓′′)𝐴𝜃𝑓′′2  (29) 

along with boundary conditions 

 
𝐼1(0) = 0, 𝐼2(0) = 1, 𝐼2(∞) = 0,

𝐼4(0) = 1, 𝐼4(∞) = 0  
(30) 

Results and discussion 

To analyze the physics of the problem under 

consideration, a parametric analysis is carried out and 

the numerical results are presented with the help of 

graphs. Figure 1 clearly describes the geometry of the 

present flow for a better understanding of the 

problem. Figure 2 indicates the temperature profile for 

the consequences of 𝐴 . The temperature profile 

increases due to the increment in 𝐴 . Figure 3 

illuminates the variations in the temperature field 

because of  𝛿 . It can be seen that by raising 𝛿  the 

temperature profile exhibits lowering behavior. Figure 

4 indicates the impact of 𝜆 on the temperature profile. 

The temperature curve goes down by raising 𝜆. Figure 

5 clarifies the temperature variations for larger values 

of 𝑃𝑟 . As is expected, for larger values of 𝑃𝑟  the 

temperature shows increasing behavior: Figure 6 

reveals the results of 𝜆  on the velocity field. It is 

decreased by the variations of  𝜆. Figure 7 describes 

the variations in skin friction by varying 𝜆   and 𝛿 . 

Figure 8 sets out the consequences of the Nusselt 

number. It is clear that the curve is bending down 

gradually. Table. 1 explains the behavior of 𝜃′(0)  at 

the wall relative to typical dimensionless parameters. 

Values of 𝜃′(0) rise through the enhancement in 𝜆, 𝐴, 

𝑃𝑟 and 𝛿. Table. 2 forecasts the impacts of 𝜆 and 𝛿 on 

skin friction. When 𝛿 and 𝜆 increase it can be seen that 

the values of the skin friction coefficient also rise. 

Table. 3 clarifies the impact of various parameters on 
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the heat transfer coefficient. This table indicates the 

increasing nature of the coefficient due to 𝜆, 𝐴, 𝛿 and  

𝑃𝑟. 

 

Figure 2: Response of A on the temperature profile 

 

Figure 3: Effects of δ on the temperature field 

 

Figure 4: Response of λ on the temperature field 

 

Figure 5: Response of Pr on the temperature field 
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Figure 6: Response of λ on the velocity field 

 

Figure 7: Nusselt number curve for distinct values of λ and δ 

 

Figure 8: Skin friction curve for λ and δ 

Table 1: Values of 𝜃′(0) at the wall for different parameters 

𝐴 0.1 2.9 5.7 8.5 

𝜆 = 0.5     

Pr = 7.1 0.79600 0.88148 0.97995 1.09419 

𝛿 = 0.53     

 

𝛿 0.5 0.8 1.1 1.4 

 𝑃𝑟 = 7.3     

 𝜆 = 0.3 0.80358 1.04119 1.27328 1.47688 

𝐴 = 1.2     

 

𝜆 0.5 0.8 1.1 1.4 

 𝑃𝑟 = 7.7     

𝛿 = 3.1 2.82162 2.83524 2.84999 2.86608 

𝐴 = 1.7     

 

𝑃𝑟 7.5 7.8 8.1 9.4 

𝛿 = 0.5     

𝜆 = 3.1 0.67237 0.73968 0.99466 1.12709 

𝐴 = 1.6     

 

Table 2: Skin friction coefficient values for λ and δ 

𝛿 𝜆 
1

2
𝐶𝑓 𝑅𝑒 

0.1 0.1 0.526524 

0.11 0.1 0.516157 

0.12 0.1 0.505810 

0.1 0.1 0.526524 

0.1 0.3 0.413206 

0.1 0.5 0.424841 
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Table 3: Values of Nusselt number for δ, 𝐴, 𝑃𝑟 and λ 

𝛿 𝐴 𝑃𝑟 𝜆 −𝜃′(0) 

0.1 0.10 5.0 1.1 0.773294 

0.2 0.10 5.0 1.1 1.041918 

0.3 0.10 5.0 1.1 1.358806 

0.1 0.10 5.0 1.1 0.773294 

0.1 0.11 5.0 1.1 1.337216 

0.1 0.12 5.0 1.1 1.315871 

0.1 0.10 5.0 1.1 1.358806 

0.1 0.10 5.2 1.1 1.403354 

0.1 0.10 5.3 1.1 1.425837 

0.1 0.10 5.0 1.1 1.358806 

0.1 0.10 5.0 1.2 1.331089 

0.1 0.10 5.0 1.3 1.303561 

 

Concluding Remarks 

The flow of blood through stenosis was investigated. 

Blood was treated as a Williamson fluid. To make a 

comprehensive study, a scientific model of the 

problem was constructed including equality of 

momentum and energy. With the assistance of 

resemblance transformations, governing equations 

are transformed into ODEs. A complete graphical study 

was performed in order to visualize the impact of 

distinct parameters on temperature and velocity 

distributions. The significant points of the findings of 

the current study are as follows: 

1. An appreciable excrescence can be seen in 

the temperature curve due to acceleration in 

the Prandtl number, A and δ and decreases by 

increasing the values of λ. 

2. Abatement happens in velocity distribution 

owing to enlargement in λ 

3. Skin friction curve shows positive deflection 

for variational values of λ and δ. 

4. Nusselt number curve shows negative 

deflection for variational values of λ and δ. 
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