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Abstract 

The aim of this study is to use the reinforcement learning method in order to generate a complementary signal for enhancing the 

performance of the system stabilizer. The reinforcement learning is one of the important branches of machine learning on the area of 

artificial intelligence and a general approach for solving the Marcov Decision Process (MDP) problems. In this paper, a reinforcement 

learning-based control method, named Q-learning, is presented and used to improve the performance of a 3-Band Power System Stabilizer 

(PSS3B) in a single-machine power system. For this end, we first set the parameters of the 3-band power system stabilizer by optimizing the 

eigenvalue-based objective function using the new optimization KH algorithm, and then its efficiency is improved using the proposed 

reinforcement learning algorithm based on the Q-learning method in real time. One of the fundamental features of the proposed 

reinforcement learning-based stabilizer is its simplicity and independence on the system model and changes in the working points of 

operation. To evaluate the efficiency of the proposed reinforcement learning-based 3-band power system stabilizer, its results are compared 

with the conventional power system stabilizer and the 3-band power system stabilizer designed by the use of the KH algorithm under 

different working points. The simulation results based on the performance indicators show that the power system stabilizer proposed in this 

study underperform the two other methods in terms of decrease in settling time and damping of low frequency oscillations. 
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Introduction 

Stability of power systems is one of the most important 

aspects of the performance of the electricity network 

because the frequency and voltage of the power 

system must always be in their nominal values, even 

under extreme turbulences, such as a sudden 

cloudburst rise, a sudden outage of a generator, or 

getting out of a transmission line during an error. 

Power system can be envisioned as large and 

interconnected systems with very complicated 

dynamics. The connection between different 

components of power systems impose different 

oscillations on the whole system. Meanwhile, the low 

frequency oscillations (0.2-0.3 Hz) are very important 

because they continue for a long time after starting. 

Sometimes, in the absence of appropriate damping, 

oscillations ranges become larger and lead to 

instability in the power systems. Also, these 
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oscillations impose a lot of restrictions on the 

capability of transferring the power of the system [1]. 

To improve damping of the power system oscillations, 

the generator is equipped with PSS, which is capable of 

damping of these oscillations. In [2], the authors have 

designed PSS in a resistant form for the single-machine 

power system. In [3] and [4], the authors have shown 

the 

superiority of the multiple-band power system 

stabilizer to the conventional system. In [5], a smart 

approach based on neural networks and artificial 

intelligence has been used which replaces in the place 

of AVR and PSS completely. Although this control 

method is resistant and adjustable, its implementation 

in practice needs a very complicated hardware, which 

makes its use impossible in practice. In [6], 

incorporating the characteristics of the neural 

networks and fuzzy logic, the authors have designed 

the neural networks and fuzzy logic-based PSS for 

damping of the power system stabilizer oscillations, 

which is a very complicated method and has a difficult 

design. 

Many researchers have emphasized on an intelligent 

and systematic education to control power system. 

Intelligent agents can update their decision-making 

power at every moment [7, 8, 9]. This need can be 

addressed by the use of a computational method for 

learning, named reinforcement learning. The purpose 

of reinforcement learning for designing a controller is 

to make the automated and intelligent agents able to 

make decisions at each state of the system and act in 

order to increase their long-term compensations. In 

the recent decade, the reinforcement learning has 

found a special place in controlling the system power 

and has been successfully employed on topics such as 

small-signal stability, voltage stability, and electricity 

market. In [10], the principles of employing the 

reinforcement learning in controlling the stability of 

the power system have been investigated and the 

efficiency of this method in controlling TSCS for 

improving the oscillations of the power transmission 

between two regions of a four-machine system have 

been shown. It can be understood from the results of 

this study that the reinforcement learning is applicable 

to any system with any large size and any dynamical 

complexity. Also, this control method is resistant and 

adjusts itself with any changes in the conditions of the 

system. In [11], the authors have shown two 

application of the reinforcement learning. In the first, 

the reinforcement learning have been used to adjust 

the performance of the conventional power system 

stabilizer, and in the second, the power system 

stabilizer is completely replaced by the reinforcement 

learning. The both applications show that the 

reinforcement learning can complement the power 

system stabilizer or be an appropriate substitute for it. 

In [12], the reinforcement learning has been used to 

control the reactive power and compared with the CLF 

probabilistic methods, and the results establish the 

superiority of the reinforcement learning. [13], the 

authors show the applicability of the reinforcement 

learning in the topic of electricity market. 

In this study, three types of control methods for the 

stability of the single-machine power system are 

investigated: conventional power system stabilizer 

(CPSS), 3-band power system stabilizer (PSS3B), and 3-

band power system stabilizer with reinforcement 

learning (PSS3B-RL). PSS3B is designed in a resistant 

form under different points of operation by 

optimization of the objective function based on the 

damping coefficient and the damping ratio of the 

unstable electromechanical modes with weak damping 

using the new optimization KH algorithm in such a way 

that the unstable electromechanical modes with weak 

damping are transmitted to a specified area of the 

complex plane, and then, its controlling efficiency in an 

non-linear system based on the proposed 

reinforcement learning method “Q-learning” is 

improved in the real time in order to better damp the 

low frequency oscillations. The reinforcement learning 

has been used to generate a complementary signal for 

improving the performance of the 3-band power 

system 

stabilizer. The control strategy combines the 

characteristics of the 3-band power system stabilizer 

and the Q-learning-based reinforcement learning, 

which leads to a simple and flexible control structure 

and is considered as a powerful method for damping 

of the low frequency oscillations and improvement of 

the dynamical stability of the power system. The 
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conventional power system stabilizer has been 

designed by the phase compensation method. Then, 

the results are compared and the superiority of the 

proposed control method are shown in terms of 

overshoot, undershoot, settling time, and ITAE, ISTSE, 

and ISE performance measures. 

Types of Power System Stabilizers 

Power system stabilizer is an electronic feedback 

control of the excitation system of the generation unit 

that its duty is to damp the oscillations and increase 

the rotor angle stability (PDF) limit of the power system 

by modulating the excitation voltage of the generator 

[14]. IEEE has defined different models for PSS. In this 

paper, the conventional PSS and PSS3B are 

investigated. 

Conventional Power System Stabilizer (CPSS) 

Figure 1 shows IEEE model of a PSS. Input of this 

stabilizer is signal of angular velocity changes, which is 

so-called CPSS. 

 

Figure 1: Structure of stabilizer CPSS. 

This block of the diagram contains the block “washout” 

which leads to decrease in the response over than the 

tolerance of the system when a turbulence occurs. 

Since PSS must create electric torque in phase as the 

velocity changes, the pre-phase-post-phase block is 

employed. The number of the pre-phase-post-phase 

block depends on the nature of the system. In this 

study, two blocks are assumed. The extent of PSS 

damping is created by the gain 𝐾𝜔 . This stabilizer is 

very sensitive to noise and always contains torsional 

oscillations. In this research, for simplicity, T1 is 

considered as equal to T3, T2 is considered as equal to 

T4, and the stabilizer has been designed by the phase 

compensation method [15]. The data are presented in 

Table 1. 

Table 1: Data related to the CPSS used in this paper. 

Name Value 

𝐾𝜔  12.5 

𝑇𝜔(𝑠) 5 

𝑇1(𝑠) 0.0738 

𝑇2(𝑠) 0.028 

𝑈𝑃𝑆𝑆,
𝑚𝑖𝑛[𝑝𝑢] -0.15 

𝑈𝑃𝑆𝑆,
𝑚𝑎𝑥[𝑝𝑢] 0.15 

 

Power System Stabilizer PSS3B 

The IEEE model of the stabilizer PSS3B is shown in 

Figure 2. The stabilizer PSS3B uses two inputs: 

electrical power changes (∆𝑃) and rotor angle velocity 

changes ∆𝜔 . In this stabilizer, T1 and T3 are time 

constants of the convertor and T2 and T4 are time 

constants of the torsional filters. The optimal stabilizer 

gain is obtained by adjusting K1, K2, and K3. Also, T1n, 

T1d, T2n, and T2d are the coefficients of the phase 

compensator of the stabilizer. In the stabilizer output, 

also, an excitation voltage limiter is used [16]. In the 

structure of Figure 2, T2 = T4 = 10, and for simplicity, we 

assumed that T1n = 0.02, T1d = 0.01, T2n = 0.03, and T2d 

= 0.01. Therefore, for the stabilizer PSS3B, the 

parameters K1, K2, K3, T1, and T3 are adjustable.
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Figure 2: Structure of the stabilizer PSS3B.

The problem of optimizing the parameter setting of 

this stabilizer are defined and resolved using the KH 

algorithm. 

Overview on Krill Herd Algorithm 

The KH algorithm has a structure similar to PSO, but 

according to [17], it performs better than PSO does 

and is also easily applicable. Thus, in this study, this 

algorithm is used to resolve the optimization problem. 

Krill is the name of a crustacean that is found in the 

waters of the whole world. These crustaceans are 

always on motion in large swarms, and the KH 

algorithm has been inspired by the rules governing 

their mass movements. In the KH algorithm, it is 

assumed that the motion of each krill particle is 

influenced by three factors: motion caused by other 

particles, exploratory motion (searching for food), and 

random dissemination. The Lagrange equation shown 

in the formula 1 models this assumption 

mathematically: 

𝑑𝑋𝑖

𝑑𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖  (1) 

Where Ni is motion caused by other particles, Fi is 

exploratory motion, and Di is physical dissemination of 

i-th particle. The motion caused by other particles is 

expressed according to the formulas (1) and (2): 

𝑁𝑖
𝑛𝑒𝑤 = 𝑁𝑚𝑎𝑥𝛼𝑖 + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑  (2) 

Where  

𝛼𝑖 = 𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
 (3) 

In the above relations, Nmax is the maximum induced 

velocity, 𝜔𝑛  is the inertia coefficient of the induced 

motion, which is a number in [0,1], 𝑁𝑖
old  is the 

previous induced motion, 𝛼𝑖
local  is the local effect 

caused by neighbors, and 𝛼𝑖
target  is the effect of the 

target direction that is caused by the best particle. The 

exploratory motion is formulated based on two main 

variables; the first is food position and the second is 

the previous experience of the food position. This 

disposition is defined by the formulas (4) and (5): 

𝐹𝑖 = 𝑉𝑓𝛽𝑖 + 𝜔𝑓𝐹𝑖
old  (4) 

Where  

𝛽𝑖 = 𝛽𝑖
food + 𝛽𝑖

best  (5) 

In the above relations, Vf  is the exploration velocity, 

𝜔𝑛  is the inertia coefficient of exploration that is a 

number in [0,1], 𝛽𝑖
food  is the food absorption 

coefficient, and 𝛽𝑖
best  is the best experience position of 

𝑖-th particle so far. The physical dissemination of the 

krill particles is considered as a random process and 

defined by the formula (6): 

𝐷𝑖 = 𝐷max𝛿 (6) 

Where Dmax  is the maximum dissemination velocity 

and 𝛿  is a directed random vector between [0,1] . 

Finally, the new position of i -th krill particle at the 

moment 𝑡 + Δ𝑡 is calculated by the formula (7): 

𝑋𝑖(𝑡 + Δ𝑡) = 𝑋𝑖(𝑡) + Δ𝑡
𝑑𝑥𝑖

𝑑𝑡
 (7) 
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It should be noted that the fixed parameter Δ𝑡 is very 

important and must be determined carefully with 

regard to the optimization problem. Since the value of 

this quantity depends on the search space, it can be 

determined by the formula (8): 

Δ𝑡 = 𝐶𝑡 ∑  

𝑁𝑉

𝑗=1

(𝑈𝐵𝑗 − 𝐿𝐵𝑗) (8) 

Where NV is the total number of variables, UB𝑗  and 

LBj  are the upper and lower limit of 𝑗 -th variable, 

respectively, and 𝐶𝑡 is a constant between [0,2], which 

allows the krill particles to search the search space 

carefully. The flowchart of the KH algorithm is shown 

in Figure 4 by blue boxes. For more details on the KH 

algorithm, the reader is referred to [17]. 

Cost Function 

In order that the stabilizer to be resistant against 

changes in the working points of the system, the 

optimization has been performed with respect to 

changes in Pt, Qt, and Xe within defined limits. The 

working points used for optimization are as following: 

• Active power (Pt): from 0.4 to 1 by steps of 0.1; 

• Reactive power (Qt): from -0.2 to 0.5 by steps of 0.1; 

• Line reactance (Xe): from 0.2 to 0.7 by steps of 0.1. 

The cost function is calculated as follows: for each 

working point, the system is linearized, the 

eigenvalues of the closed loop system are obtained, 

and the objective function is calculated using the 

unstable eigenvalues or less damped eigenvalues of 

the system that need to be displaced toward the 

complex plane. Formula (9) shows the objective 

function used in this study: 

𝐽 = ∑  

𝑛𝑝

𝑗=1

∑  

𝜎𝑖𝑗𝑧𝜎0

[𝜎0 − 𝜎𝑖𝑗]
2

+ 𝑎 ∑  

𝑛𝑝

𝑗=1

∑  

𝜁𝑖𝑗≥𝜁0

[𝜁0 − 𝜁𝑖𝑗]
2
 

(9) 

Where 𝑛𝑝  is the number of working points, 𝜎  is the 

real part of eigenvalues, 𝜁 is the damping coefficient, 

and 𝑎  is the weight coefficient. In relation (1), we 

assume that 𝑎 = 10, 𝜎0 = −1, and 𝜁0 = 10%. Figure 

3 describes the objective function of formula (9). For 

more details, refer to [18]. 

 

Figure 3: Area specified for objective function. 

The process of designing the destabilizer PSS3B can be 

considered as an optimization problem with following 

restrictions: 

Minimize J  

subject to:  

𝐾1
min < 𝐾1 < 𝐾1

max, 𝐾2
min < 𝐾2 < 𝐾2

max ,

𝐾3
min < 𝐾3 < 𝐾3

max, 𝑇1
min < 𝑇1 < 𝑇1

max 

𝑇3
min < 𝑇3 < 𝑇3

max 

 (10) 

The results from resolving the optimization problem of 

formula (10) is shown in Table 2. 

Table 2: Results from optimization of PSS3B. 

Name Value 

𝐾1 2.0304 

𝐾2 13.7193 

𝐾3 0.5 

𝑇1 0.1002 

𝑇3 0.01 
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Reinforcement Learning 

The reinforcement learning is a method in which one 

or more agents in interaction with the environment 

learn an optimal control policy in order to realize a 

predefined objective. Optimal policy refers to selecting 

the best action among the available ones for each 

position of the agent in the environment. In general 

case, the agent does not have an initial knowledge 

about the environment and learns the control policy 

using a trial and error method. The reinforcement 

learning methods can control any non-linear system 

without simplifying. Q-learning is one of the well-

known reinforcement learning methods used in this 

research. The reason for using it is its simplicity and 

independence on the system model. Some of the 

salient features of the Q-learning-based controllers 

can be their independence on the system model, their 

resistance in changing the operation conditions and 

uncertainty of the system parameters, their adaptive 

control, and their implementation simplicity. This 

control method can be used as an appropriate 

complement for the traditional control methods; in 

this paper, this feature has been used and the 

efficiency of the power system has increased by 

utilizing Q-learning and creating a complementary 

signal. The reinforcement learning assumes that the 

environment (control system) has been divided into 

limited states and is shown by {S}. At each step t, the 

agent sees itself in the state st and select the action a 

among a set of available actions {A}. The agent receives 

a reward as soon as it does an action. The given reward 

is defined in such a way that shows the satisfaction 

with the performed action. Then, the agent sees itself 

in the state st+1, select the appropriate action again 

and this trend continues until the specified objective is 

realized. The purpose of the reinforcement learning is 

to find a policy, a map between the states and actions 

of the system, and as a result, the decreased long-term 

reward reaches its maximum. The decreased long-

term reward of the system is given as follows: 

𝑅𝑡 = ∑  

∞

𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (11) 

Where 𝛾  is a number between [0,1]  and is called 

"reduction factor". This factor shows the importance 

of the future rewards in decision-making. If its value is 

assumed 0 , then the next rewards will be ineffective 

in the decision-making process, and if its value is 

assumed 1 , then the 

next rewards will be effective in the decision-making 

process. The reinforcement learning has a value 

function, which is called "Q function" in Q-learning and 

defined as: 

𝑄𝜋(𝑠. 𝑎) = 𝐸𝜋 {∑  

∞

𝑘=0

  𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑆𝑡 = 𝑆. 𝑎𝑡 = 𝑎} (12) 

Where 𝜋 is the control policy, 𝑠 is the current state, 𝑎 

is the selected action, and 𝑟  is the reward received 

from the environment. The reinforcement learning 

method finds the optimal policy 𝜋∗ in such a way that 

the value of the Q function of formula (12) reaches its 

maximum. In the Qlearning method of the 

reinforcement learning at each time step, formula (12) 

is updated in the interaction with the environment. 

The updated relation is called "Bellman optimal 

equation" and is given by formula (13): 

Δ𝑄 = 𝛼[𝑟𝑟+1 + 𝛾𝑎
max𝑄(𝑆𝑡+1 ⋅ 𝑎𝑡+1) − 𝑄(𝑠𝑡 ⋅ 𝛼𝑡)] (13) 

Where 𝛼  is a number between [0,10]  and is called 

"attenuation coefficient", which represents the real 

error value. In Table 3, the implementation steps of the 

Q-learning algorithm is shown briefly. 

The semi-greedy algorithm is used to select the action 

in each state as follows: with the probability 1 − 𝜀, the 

action with higher Q  is selected, and with the 

probability 𝜀, an action is randomly selected among all 

actions. 

Table 3: Step-by-step implementation of the Q-learning 
algorithm. 

a. Find the optimal policy. 

a.1. Define the set of states, actions, and rewards. 

a.2. Determine the values of 𝛾, 𝛼, and 𝜀. 

a.3. Initializing 𝑄(𝑠, 𝑎) = 0 for all states and 

actions. 

a.4. For each run (episode): 

a.4.1. Calculate the current state (s) of the system. 

a.4.2. Repeat until reaching the goal. 
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a.4.2.1. Select the action 𝑎 among the available 

actions of the system for the state (s) using the 

semi-greedy algorithm ( 𝜀-greedy). 

a.4.2.2. Do the action 𝑎 and receive the reward (𝑟) 

and the next state. 

a.4.2.3. Update the function 𝑄 using the below 

relation: 

𝑄(𝑠. 𝑎) = 𝑄(𝑠. 𝑎) + Δ𝑄 (14) 

a.4.2.4. Set the next state of the system as the 

current state. 

End of repetition (go to a.4.2) 

End of a run (go to a.4) 

 

b. Implement the optimal policy. 

b.1. For the current state of the system, select the 

action that maximizes the value of the function Q. 

b.2. Select the next state of the system and set it as 

the current state. 

b.3. Go to 𝑏. 1 and continue this process. 

 

Reinforcement Learning Parameters 

Used in This Study 

States 

The main purpose of using stabilizer is to damp the low 

frequency oscillations in the power system. In other 

words, the stabilizer must damp the power oscillations 

or frequency oscillations. Thus, Δ𝑃 and/or Δ𝜔 and/or 

the combination of these two can be used as system 

states. In this study, Δ𝜔  has been considered as a 

state. The interval [−0.01, +0.01]  (in the pre-unit 

system) has been divided into 12 parts, each of which 

represents a state of the system. Therefore, the set of 

states can be defined as following: 

𝑆 = {(−∞, −0.01], (−0.01, −0.0082], (−0.0082, −0.0064],

(−0.0064, −0.0027], (−0.0027, −0.0009], (−0.0009,0.0009],
(0.0009,0.0027], (0.0027,0.0045], (0.0045,0.0064],

(0.0064,0.0082], (0.0082,0.01], (0.01, +∞]}

 (15) 

In the set of states, the state (-0.0009, 0.0009] is 

considered as the normal state. 

Actions 

Defining the set of actions is very complicated and 

important. Given the restrictions placed on the output 

of the stabilizer, the range (limit) of these actions can 

be estimated. According to [19], it can be estimated 

that actions are in the interval [-0.2, 0.2]. For 

simplicity, the set of actions is defined as following: 

𝐴 = {−0.2,0.2} (16) 

Reward 

In general, the aim of designing an stabilizer is to damp 

the power and frequency oscillations, the choice of the 

intended reward is set to the distance ∆𝜔 from 0 in 

two time steps t and t-1. In this study, it is assumed 

that each action is applied to the system for 50 

milliseconds, and then, the next state and reward are 

calculated. Thus, the reward is given by: 

𝑅𝑒𝑤𝑎𝑟𝑑𝑡 = ∑ ∆𝜔(𝑡)
𝑡

𝑘=𝑡−1
 (17) 

Also, the values of 𝛼, 𝜀 𝑎𝑛𝑑 𝛾  are assumed as 0.02, 

0.05, and 0.98, respectively. In Figure 4, the power 

system model of this study and the way by which the 

reinforcement learning is applied to the power system 

stabilizer in order to optimize its performance is 

shown. 

Simulation Results 

To show the performance of the proposed control 

method, the computer simulations are performed by 

the use of the software MATLAB. The studied system 

is shown in Figure 4 and the details of its components 

is available in [10]. The simulations for a three-phase 

error of 100 ms in the generator bus have been done 

in different operation conditions. Figures 5 and 6 show 

the results from occurring a three-phase error of 100 

ms in the generator bus at two different working 

situations.
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Figure 4: The studied power system model and the proposed method for optimizing the performance of the power system 
stabilizer using Q-learning and the Krill Heard algorithm. Blue dashed line: flowchart of the KH algorithm; dotted line: Q-
learning-based stabilizer; violet dashed line: the studies power system model. 
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Figure 5: Results from a three-phase error of 100 ms in the working situation: Pt = 1.2, Qt = 0.2, Xe = 0.7, and Tm = 0.9. A) Sm. 
B) Tm. Integrated: PSS3B + RL. Dashed line: PSS3B. Dotted line: CPSS. 

These figure obviously show that the proposed control 

method, in dependent of the operation conditions, is 

very more effective than the conventional stabilizer 

and the stabilizer PSS3B. In the following, the 

simulation results of four different working situations 

are investigated statistically and the measures of 

overshoot, undershoot, ITAE, ISTSE, and ISE for the 

changes ∆𝜔  are calculated in Table 4 in order to 

compare the performance of stabilizers at different 

working situations. As the data in Table 4 show, it can 

be concluded that the Q-learning-based 

complementary control method has improved the 

performance of PSS3B independent of different 

working situations. The value of overshoot at each of 

four working situation has been improved by about 

20% compared to PSS3B without complementary 

control. The value of undershoot at the working 

situations 1 and 2 and at the working situations 3 and 
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4 has been improved by about 16% and 13%, 

respectively. The settling time at the working 

situations 1 and 3, the working situation 2, and the 

working situation 4 has been increased by about 0.1, 

0.7, and 0.33, respectively. 

The measure ITAE has been increased by about 40% at 

the working situations 1 and 2 and 60% at the working 

situations 3 and 4. The measure ISTSE has been also 

improved by about 95%, 56%, 69%, and 71% at the 

four working states, respectively. Therefore, Figures 5 

and 6 and also the data analysis of Table 4 prove that 

the proposed reinforcement learning-based control 

method is more effective than other methods. 

 

 

Figure 6: Results from a three-phase error of 100 ms in the working situation: Pt = 0.7, Qt = 0.5, Xe = 0.3, and Tm = 1.2. A) Sm. 
B) Tm. Integrated: PSS3B + RL. Dashed line: PSS3B. Dotted line: CPSS. 
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Table 4: Comparison of different types of PSS at different working situations. 

PSS3B+RL PSS3B CPSS Measure Working situation 

0.88 1.09 1.2 %OS 

Tm = 0.9, Pt0 = 1.2 

Qt0 = 0.2, Xe = 0.7 
1 

0.7 0.842 1.08 %US 

1.009 1.0101 3.2784 Ts [S] 

0.0248 0.0401 0.1262 ITAE 

0.001 0.0024 0.0082 ISTSE 

1e-6 2.2e-5 7.08e-5 ISE 

0.87 1.08 1.19 %OS 

Tm = 0.9, Pt0 = 1.2 

Qt0 = 0.2, Xe = 0.7 
2 

0.6956 0.8376 1.06 %US 

1.3556 1.4599 3.2483 Ts [S] 

0.0247 0.0399 1.1224 ITAE 

0.0008 0.0022 0.0078 ISTSE 

9.97e-6 2.26e-5 6.77e-5 ISE 

1.37 1.69 1.83 %OS 

Tm = 0.9, Pt0 = 1.2 

Qt0 = 0.5, Xe = 0.3 3 

1.22 1.39 1.73 %US 

1.3502 1.5069 10.9621 Ts [S] 

0.0410 0.1026 0.4227 ITAE 

0.003 0.0106 0.0557 ISTSE 

2.85e-5 9.72e-5 3.98e-4 ISE 

Tm = 1.2, Pt0 = 1 

Qt0 = 0, Xe = 0.5 

1.37 1.7 1.84 %OS 

4 

1.23 1.42 1.76 %US 

1.3388 1.7864 10.5223 Ts [S] 

0.0405 0.1027 0.4214 ITAE 

0.0029 0.0107 0.00554 ISTSE 

2.81e-5 9.74e-5 9.96e-4 ISE 

Conclusion 

In this study, the power system stabilizer PSS3B was 

designed by the use of the KH smart algorithm. To 

design a resistant controller, the used objective 

function shifted the unstable or less damped 

eigenvalues of the system towards stability and 

dampness. After optimal setting of the PSS3B 
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parameters, its performance was optimized in real 

time using the proposed Q-learning-based 

reinforcement learning algorithm. Some of the 

fundamental features of the proposed reinforcement 

learning-based combined stabilizer is its simplicity, its 

independence of the system model, and its resistance 

against disturbances imposed on the system and 

changes in the working points of operation. After 

applying the proposed control method, the 

performance of three kinds of control method, i.e. the 

conventional power system stabilizer, PSS3B, and 

PSS3B+RL was evaluated by imposing the system to 

disturbances at different operation conditions and 

applying the three-phase error. The simulation results 

showed that by combining the features of the 3-band 

power system stabilizer and the Q-learning-based 

reinforcement learning, the proposed control method 

leads to a simple and flexible control structure and has 

a high ability to damp the low frequency oscillations 

and improve the dynamical stability of the power 

system. To show the superiority of the proposed 

stabilizer, the simulation results were compared at 

different working situations in terms of the values of 

overshoot, undershoot, settling time, ITAE, ISTSE, and 

ISE and the results apparently confirm the superiority 

of the proposed method. Therefore, it can be 

concluded that the reinforcement learning can a 

complement of and even an appropriate substitute for 

power system stabilizers. 

Appendix 

Formula (18) shows the dynamical equations of the 

power system used in this study: 

𝑑𝛿

𝑑𝑡
= 𝜔𝑛𝑆𝑚 

𝑑𝑆𝑚

𝑑𝑡
=

1

2𝐻
[−𝐷𝑆𝑚 + 𝑇𝑚 − 𝑇𝑒]

𝑑𝐸𝑑
′

𝑑𝑡
=

1

𝑇𝑞0
′ [−𝐸𝑑

′ − (𝑋𝑑 − 𝑋𝑞
′ )𝑖𝑞]

𝑑𝐸𝑞
′

𝑑𝑡
=

1

𝑇𝑑0
′ [−𝐸𝑞

′ − (𝑋𝑑 − 𝑋𝑞
′ )𝑖𝑞 + 𝐸𝑓𝑑]

𝑑𝐸𝑓𝑑

𝑑𝑡
=

1

𝑇𝑎

[𝐾𝑎(𝑉𝑟𝑒𝑓 + 𝑉𝑠 − 𝑉𝑡) − 𝐸𝑓𝑑]

[
𝑈𝑑

𝑈𝑞
] = [

𝐸𝑑
′

𝐸𝑞
′ ] − [

0 𝑋𝑞
′

−𝑋𝑑
′ 0

] [
𝑖𝑑

𝑖𝑞
]

[
𝑖𝑑

𝑖𝑞
] = [

0 𝑋𝑒

−𝑋𝑒 0
]

−1

[[
𝑈𝑑

𝑈𝑞
] + 𝐸𝑏

′ [
sin 𝛿

−cos 𝛿
]]

 

(18) 

The equations of the measures used in this study is 

given by formula (19): 

 ITAE  = ∫  
𝑡𝑠𝑖𝑚

0

 𝑡|Δ𝜔|𝑑𝑡

 ISTSE  = ∫  
𝑡𝑠𝑖𝑚

0

  𝑡2Δ𝜔2𝑑𝑡

 ISE  = ∫  
𝑡𝑠𝑖𝑚

0

 Δ𝜔2𝑑𝑡

 (19) 
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