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Impact of uncoordinated electric vehicle charging on the

distribution grid
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Abstract

Charging electric vehicles (EVs) represents an extra and in-

creasing load for the power system. And the higher the charg-

ing power is, the more likely it is that serious problems will

arise. In addition to home charging, in Hungary - the area

of interest in this paper - Level 2 chargers in the streets are

currently installed with a maximum charging power of 22 kW.

Since the local market share of EVs is low at present and ex-

pected to remain relatively low in the years to come, it is es-

sential to see where the limits of the low-voltage distribution

grid are in terms of taking the extra EV charging load. This

paper presents extensive simulation results taking various EV

charging characteristics, arrival statistics, household load vari-

ation, and other assumptions into consideration to determine

how EV charging will affect the low voltage grid. The stochas-

tic simulations were conducted in DIgSILENT Power Factory

augmented with a Python code. Simulation results indicate

that an already moderately loaded grid is capable of accommo-

dating EVs at a penetration level of approximately 20%, which

can be considered a high value.

Keywords: DIgSILENT, electric car, Level-2 charg-
ing, stochastic simulation

1 Introduction

With the spread of electric vehicles (EVs) worldwide,
system operators are facing a situation when exces-
sive load on distribution grids is likely to cause several
power quality issues. By the end of 2018, over 10 000
cars had been registered with electric drives, of which
nearly half are fully electric, and further growth is ex-
pected due to incentives, for example tax exemptions,
cheaper operation and fuel costs [1]; [2].

Since the share of EVs in the current car pool is very
small, there are no comprehensive datasets available
regarding the impacts of EV charging on the distri-
bution grid, though some surveys have already been
made: [3] demonstrates examples from Finland, [4]
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from Norway, and [5] from the UK. Among the possi-
ble impacts we can mention the following [6]: increase
in system thermal loading, deterioration of voltage
profiles, increase in losses and asymmetry, reduction in
transformer lifetime [7], and an increase in harmonic
distortion due to the chargers is possible, with pos-
sibly greater sensitivity to power system disturbances
[8]. Hence there is a need for simulations so as to gain
better insight into these possible impacts. However,
operators have to face multiple uncertainties: time
and space randomness of EV charging [9], different
state-of-charge (SOC) values and battery capacities,
driver behavior [6], variations in household loading,
phase assignment of loads, etc.

Most papers assume that without any kind of charge
control, EV batteries start charging as soon as they
are plugged in [9] and they investigate different EV
penetration levels. [9] investigates the impact of plug-
in EV charging on a Chinese distribution grid and
finds that a grid in Beijing can accommodate ap-
proximately 20-30% EV penetration (meaning that
20-30% of households have EVs) before encounter-
ing power quality issues. [10] analyzed the impact on
voltage imbalance of a distribution grid in Thailand
with various EV penetration levels, and also deter-
mined a limit of 20-30% penetration. [11] gave 25%
for the UK, whereas [12] calculated that Sweden could
handle a larger penetration. In weaker grids, such as
in Malaysia the 20% penetration level is also the up-
per limit [13]. [14] takes realistic arrival profiles and
charging characteristics into consideration to compose
a stochastic simulation. Many papers conduct Monte-
Carlo simulations (see e.g. [3] , [15]), which we also
used alongside real-life data for modeling.

The novelty of our approach is that more parameters
are taken as random variables and their values are de-
termined based on the features of currently available
EV models, real measurements and statistical data
(see the modeling assumptions in Section 2) and we
used a Hungarian distribution area, which is a repre-
sentative example of a typical Central European grid.
The paper is organized as follows: Section 2 presents
the modeling assumptions, Section 3 briefly intro-
duces the algorithm that stochastically scheduled the
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cars and assigned charging power, SOC distribution,
etc. to every load. In Section 4, the results obtained
are described with the stochastic simulations while
Section 5 sets out the main findings and conclusions.

2 Modeling assumptions

To make the simulation realistic, various assumptions
were made regarding the grid model, the EVs and the
household loads.

2.1 Assumptions regarding the model

The investigated grid is shown on Fig. 1. This is an
LV network in rural Hungary with a moderately high
loading, see Fig. 2. All simulation results are depicted
on boxplot figures, i.e. every time 10 runs were con-
ducted, hence the figures represent a statistical eval-
uation of the results obtained.

Figure 1: The investigated LV grid

Household loads are single-phase loads and are evenly
distributed along the lines, which means that if there
are 2 loads on a 25 m long line, they are 8.33 m
apart from each other (and from the ends of the line,
respectively). The phase distribution is also even, but
randomly assigned. This means that asymmetry is
kept low in the model grid.

MV/LV transformers in Hungary have no-load tap
changers: ±2 taps, with 2.5% voltage change of each
tap. The transformer nominal power is 400 kVA with
short-circuit voltage uk = 4.22% and 5.9 kW copper
loss.

Line data is given on Fig. 1, with the following electric
parameters (Table 1).
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Figure 2: Loading of the MV/LV transformer without
EVs

Table 1: Positive sequence electric parameters of the
line types

Type R1
[/km]

X1
[/km]

Rated current
[kA]

Ald 0.72 0.06982 0.14
MLC95 0.32 0.07541 0.21
NFAX2 0.32 0.07541 0.24
XL40 0.311 0.159 0.22

2.2 Assumptions regarding the house-
hold loads

Household load profiles are assigned randomly from a
pool of 500 loads of which Fig. 3 shows 5 profiles
as an example. The power factor of the household
loads was taken to be 0.85 to which a random variable
for each load with Gaussian distribution with 0 mean
and 0.05 standard deviation was added (power factor
larger than 1 was naturally not allowed).
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Figure 3: Household load profiles (example)

2.3 Assumptions regarding electric cars
and chargers

Even though it was assumed that the chargers are
not going to be home chargers, one can still suppose
that the local inhabitants will use them in most of the
cases. There are 142 households in the analyzed grid,
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and investigations for 10%, 20%, 50% and 100% pen-
etration of electric cars were simulated, which means
15, 28, 71 and 142 cars, respectively.

All chargers are taken to be 22 kW Level 2 chargers
with cos φ = 1, but not all of the cars are capable
of charging with this power at the time of writing
of the paper. Based on car manufacturers’ data, we
determined two scenarios:

• one in which 1% of the cars have a charging ca-
pability of 22 kW, 4% of them have 11 kW, 10%
of them have 7.2 kW and 85% of them 3 kW;

• while in the other scenario these numbers are 2%,
10%, 20% and 68%, respectively.

Cars arrive to chargers according to the density func-
tion depicted on Fig. 4. This distribution is in good
accordance with measurements done in Norway on a
fleet of EVs [4] and the very detailed analysis done by
[16].
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Figure 4: Distribution of EV arrival times [17]

Table 2 shows the currently available EVs’ battery
capacity (the data was taken from car manufacturers’
datasheets). Based on these data the cars in the sim-
ulation had the following battery capacity: 24, 28, 30,
40, 50 and 60 kWh, all with the same probability. The
chosen values represent a larger loading scenario, since
cars with larger battery capacity have to be charged
longer.

Besides the battery capacity an important piece of
information is the state of charge (SOC) of the battery
when arriving to charge and also when leaving the
charging stations. Fig. 5 and Fig. 6 show these data,
respectively.

Even though charging with Level 2 chargers results in
a nonlinear curve regarding SOC changes (see Fig. 7),
in this research it is considered as linear (this approxi-
mation is in good accordance with real charging char-
acteristics up to 90-92% of SOC).

Charging time was thus calculated as follows:
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Figure 5: Battery SOC at the beginning of charging
events [18]
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Figure 6: Battery SOC at the end of charging events
[18]

0

20

40

60

80

100

120

0 20 40 60 80 100 120

SO
C

 [
%

]

Time [min]

SOC (43 kW) SOC (22 kW)

Figure 7: Battery SOC change during charging of a
Renault Zoe [19]

T =
SOCend − SOCstart

Scharger
· Cbattery

where: SOCend – the SOC at the end of a charging
event, SOCstart – SOC at the beginning of a charg-
ing event, Scharger – nominal apparent power of the
charger, Cbattery – battery capacity in kWh. With 22
kW charging power, the charging time is in the range
of 45–90 minutes, which correlates well with the re-
sults obtained from [20] with similar parameters.
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Table 2: Battery capacity of plug-in hybrid and pure electric EVs
Pure EV Plug-in hybrid

Type Battery capacity [kWh] Type Battery capacity [kWh]
Audi e-Tron 95 Audi A3 e-Tron 8.8
BMW i3 22–33 Audi Q7 e-Tron 17
Opel Ampera 60 BMW i8 7
Peugeot iOn 16 BMW X5 9
Fiat 500e 24 Chevrolet Volt 16–18
Ford Focus 33,5 Hyundai Ioniq 8.9
Hyundai Kona 39.2–64 Kia Niro 8.9
Hyundai Ioniq 28 Mitshubishi Outlander 12
Kia Soul 27 Toyota Prius III 4.4
Kia Niro 39.2–64 Toyota Prius IV 8.8
Nissan Leaf II 24–60 VW Golf GTE 8.8
Mitshubishi MiEV 16
Renault Fluence 22
Renault Zoe 41
Tesla S 60–100
Tesla X 60–100
VW Golf-e 24–36

2.4 Assumptions regarding electric cars
and chargers

Since the charging power of cars is currently low, it
is expected that many chargers are required to fulfill
the charging needs.

Figure 8: Grid model in DIgSILENT

38 chargers (roughly 25% of the number of all house-
holds) were placed in the grid (see Fig. 8, the
load symbols pointing left are the chargers, while the
load symbols pointing right are the household loads).
Chargers are modeled as 3-phase loads.

3 Simulation algorithm

The simulation was performed by a Python script in
15 minute resolution. At every time step, the num-
ber of arriving cars is determined (it can be 0, too)
and a charging time and charging power is assigned
to these cars, which are random variables and are
drawn randomly according to the rules presented in
Section 2.3. The algorithm also checks whether there
are any chargers available and if yes, assigns the car
to this charger. This charger is then considered oc-
cupied for the pre-determined charging duration. The
algorithm does not take spatiality into consideration,
i.e. the first available charger in the list of chargers is
always taken.

If there are no chargers available, the cars have to
wait. It was presumed that the customers are infinitely
patient, i.e. they wait until a charger is disengaged,
so balking was not modeled.

Simulations with a varying pool size of cars were con-
ducted: 15, 28, 71 and 142 cars. Due to space limi-
tations, here only the results obtained with 28 and 71
cars are described. Simulations with different number
of chargers were also carried out, but not included in
this paper explicitly.

The algorithm was run 10 times for all configurations.
Each of these runs differed from the others, because
the arrival times, the starting and ending SOC val-
ues, the battery capacity, etc. were changed accord-
ing to the distributions presented in Sections 2.2 and
2.3. This means that the simulation can be treated as

88 | 91



Journal of Power Technologies 100 (1) (2020) 85–91

stochastic, and it follows from this that the evaluation
of the results is based on boxplot diagrams.

4 Simulation results

As Fig. 2 indicated, the loading of the grid before the
chargers were installed was moderate. Fig. 9 shows
that the voltage also stays in the accepted region.
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Figure 9: Lowest voltage point in the investigated grid

4.1 28 cars, first battery capacity data

In the first investigated case there are 28 cars, and
the first scenario regarding car charging capability is
considered. Fig. 10 shows the voltages at the low-
est voltage node (which is the furthest node from the
MV/LV transformer) and Fig. 11 depicts the trans-
former loading.

It can be seen that even though there are no limit
violations (according to low voltage limits defined in
EN 50160, it is Unominal +8%/-7%) in Hungary, trans-
former loading is very close to 100%.
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Figure 10: Lowest voltage point in the investigated
grid

4.2 71 cars, first battery capacity data

The next case deals with 71 cars, which represents
50% EV penetration in the investigated LV net-
work. Fig. 12 shows the voltage of the lowest voltage
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Figure 11: Transformer loading

node: it can be seen that at this penetration level the
voltage is outside of the permitted region. Similarly,
the transformer is overloaded, see Fig. 13 (lines also
get overloaded, but this paper does not contain any
diagram depicting that issue). In this case there are
even cars that have to wait, because there are too few
chargers to fulfill charging needs (Fig. 14).
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Figure 12: Lowest voltage point in the investigated
grid
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Figure 13: Transformer loading

The results obtained for the second battery capacity
dataset were very similar: for 28 cars there was no
overloading, the voltage was not out of the limits,
but for 71 cars every observed parameter was outside
of the permitted limits and cars also had to wait.
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Figure 14: Number of waiting cars

5 Conclusions

The aim of our paper was to create a practical data-
based simulation model to study the impact of elec-
tric vehicle charging on a low voltage distribution grid.
Since multiple uncertain parameters were taken into
consideration, a stochastic simulation was conducted.
Compared with previous research results and data
from industrial stakeholders, the authors suggest that
the DSOs should use stochastic calculation methods
to acquire data that describe the possible scenarios in
a sophisticated manner. In addition to using appropri-
ate technology to integrate e-mobility effectively into
the grid, the methods that DSOs use could greatly en-
hance cost-effectiveness and security of supply. The
results obtained demonstrate that at low penetration
levels of EVs (up to 20 .. 30%) the current Hun-
garian distribution grid is capable of accommodating
the extra load caused by the charging of electric cars
without any kind of modification. For higher pene-
tration levels though, a solution has to be found to
alleviate the charging impacts. Controlled charging
seems to have huge potential, as do other demand
side management and energy storage solutions. Fur-
ther research is needed to compare different methods
in bulk e-mobility integration, which also factors in
distributed generation.
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