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SOME THEORETICAL AND PRACTICAL ASPECTS 
OF EFFICIENT MODELLING OF HEAT TRANSFER 

PHENOMENA ON A FINITE-ELEMENT GRID 

A review of the contemporary numerical techniques, commonly used in a computer simulation 
of practical engineering problems, involving the fluid flow and coupled heat transfer, is given 
in terms of comparison of their accuracy and computational economy. Particularly, some as-
pects of the utilization of two different formulations of the Finite Element Method (FEM), i.e.: 
the one based on the weighted residual approach (PGFEM) and the one where the control-
-volume method is exploited (CVFEM), are discussed to find the answer to the question of how 
to improve the economy of the FEM calculations. In this context, the accuracy of both methods 
is considered through verifying a physical correctness of the solution obtained. Some simple 
and no-time consuming means are discussed to reduce inaccuracy resulting from a violation of 
the physically meaningful conservation and maximum principles as well as from the improper 
modelling of convection over a sparse grid. Furthermore, to speed up the FEM calculations it is 
shown here how to adopt the time-split and factorization techniques, which take their origin 
from the finite difference methods, in the Control-Volume based FEM. The encouraging 
preliminary results are reported here for three pertinent test problems, involving the recirculated 
flow and coupled heat transfer. 

NOMENCLATURE 

С — the capacity matrix 
^k,m — component of the capacity matrix 
F — integrand function 
Gr — Grashoff number 
fn — given normal stresses on the domain boundary 
л — given share stresses on the domain boundary 
h — enthalpy 
К — boundary value of enthalpy 
h* — intermediate value of enthalpy at time t + At 
К — diffusion matrix 



- convection matrix 
МР — interpolation function associated with geometrical node ρ 

"т — interpolation function associated with node m used to approximate 
the scalar quantity sought 

N g 
- number of geometrical nodes 

N и - number of nodes used in the velocity interpolation 
NE — number of elements 
NP - number of nodes used in an interpolation of a scalar Φ 
ni - components of an outward unit normal 
Ре — Peclet number 
Pi - velocity interpolation function associated with the node I 
Pr - Prandl number 
Ρ - pressure 
Qk 

- pressure interpolation function associated with the node к 
R - right-hand side vector of the matrix equation 
Ra - Raileigh number 
Re - Reynolds number 
REZ{.. · ) - residuum (error) of a partial differential equation 
S - rate of a volumetric source 
s. - rate of a volumetric force in the momentum equation in /-dire-

ction 
sh 

- rate of a volumetric source in the energy equation 
t — time 
\ - component of the velocity vector 
uv ui - components of the intermediate velocity vectors 
X - global Cartesian coordinate system 
xi - component of Cartesian coordinate system 
wk - weighing function associated with the node к 
Γ — boundary surface of the domain Ω 
Ге - boundary surface of the element domain Ωβ 

Г, - boundary surface of the control volume 
Γ„,Γτ - external surface of domain Ω with given velocity or boundary 

stresses, respectively 
г „>г ? - external surface of Ω with the given enthalpy (temperature) or 

heat flux, respectively 
λυ· — component of the conductivity tensor to the specific heat 
μ - dynamic viscosity 
At — time step 
θ - parameter of the one-step implicit finite difference time marching 

scheme 
ζ — local curvilinear coordinate system 
(i - component of the local curvilinear coordinate system 
Ρ - product of density and specific heat 



Φ — scalar quantity sought 
Ω — volume of geometrical domain 
Qe — finite element volume 
Ωα — control volume associated with the node к 
Q.ke — element fraction of the control volume Ω^ 

S u b s c r i p t s 

e — pertaining to the element e 
i, j — coordinate directions 
к, I, m — associated with the node к, I or m, respectively 

S u p e r s c r i p t s 

e — pertaining to the element e 
η — refers to time t = nAt 
0 - refers to initial values of ui, ρ and h 

A b b r e v i a t i o n s 

С - Consistent Capacity Matrix Model 
CVFDM - Control-Volume (based) Finite Difference Method 
CVFEM — Control-Volume based FEM 
CVFEM-TM - CVFEM with high order approximation of the temporal 

term of the balance equation 
FDM — Finite Difference Method 
FE — Finite Element 
FEM — Finite Element Method 
GFEM — FEM based on the Galerkin Method 
GFEM-D — GFEM model based on the conservative form of the partial 

differential equation 
GFEM-T - Taylor-Galerkin FEM 
L - Lumped Capacity Matrix Model 
LTDMA - Line-Tridiagonal Solver 
PDE - Partial Differential Equation 
PGFEM - FEM based on the Petrov-Galerkin Method 
SOR - Successive Over-Relaxation iteration technique 

INTRODUCTION 

There is no doubt that the most reliable information about physical phenome-
non can be obtained by direct observation and measuring the reality itself. Full 



scale experimental investigations are, however, in most cases prohibitively 
expensive and often impossible. Therefore, they are replaced by experiments 
on small scale models. Unfortunately, they cannot always simulate all impor-
tant features of the subject in its full scale and there are not general rules of 
extrapolation of the resulting information to the full scale. Moreover, experi-
ments are often cumbersome and time-consuming. It is, therefore, a need for 
searching a new way of quantitative analysis of the problem considered. 

Owing to a tremendous progress in both the computer technology and the 
computer simulation techniques, a numerical analysis of physical phenomena 
and practical engineering problems, which is based on a discrete representa-
tion of a classical continuous model, has been becoming more and more popu-
lar among scientists and designers for more than last thirty years. 

Indeed, a numerical simulation of physical phenomena is often a reasonable 
alternative and always a desirable supplement to the experimental study. Low 
cost and remarkable speed in achieving comprehensive information about the 
subject analyzed are commonly appreciated advantages of numerical calcula-
tions. In most applications the cost of computer run is many orders lower in 
its magnitude than the cost of corresponding experiments. Moreover, numeri-
cal analysis provides, with a remarkable speed, an answer to the question of 
how an individual parameter influences behaviour of the system considered or 
to the question of what are optimal data for a design. 

Despite these merits, a proper numerical model can be defined only if 
adequate physical and mathematical models of the phenomenon exist. It is 
seen, therefore, that in a comprehensive analysis (or in a design program) an 
effective balance in a use of both an experimental approach and a discrete 
simulation must be struck. The experimental analysis server to verify the 
physical model and its mathematical counterpart utilized in the investigation, 
whereas numerical methods serve to provide a quick and cheap tool for exa-
mining the influence of various parameters on behaviour of the system or 
design considered. 

This paper deals explicitly with contemporary numerical techniques used to 
simulate fluid flow and heat transfer problems on a computer and its main 
purpose is to give some comments on the utilization of the Finite Element 
Methods to the convective-diffusive transport phenomenon. 

1. GENERAL COMPARISON OF CONTEMPORARY NUMERICAL 
METHODS 

Concise review of contemporary numerical techniques, commonly used in 
computer simulation of practical engineering problems, involving the heat 
transfer and fluid analysis, is given in Fig. 1. 



Fig. 1. Contemporary numerical methods based on integral formulation of heat transfer problems 

They differ from each other in both the local interpolation technique used 
to approximate the unknown field quantity and the way in which the final set 
of algebraic equations of the discrete model is established. 

When the truncated Taylor series expansion is applied to approximate 
derivatives of an unknown between two adjacent grid points one obtains the 
finite difference interpolation, typical for any finite difference analogue (FDM) 
of the continuous model. On the other hand, a more general approximation of 
the field quantity can be established on the basis of an interpolation with the 
local subdomain support [1,2]. The latter discretization procedure, inherent in 
any Finite Element Method (FEM) is further called the element-wise interpo-
lation and described in the subsequent chapter. 

When the local form of the conservation principle, given by partial differ-
ential equations, is taken as the starting point of the solution procedure, the 
final set of discrete model equations can be obtained by means of sophisti-



cated mathematical techniques, indispensable to formulate an integral equation 
of the problem. Namely, the classical FEM is based on the Petrov-Galerkin 
weighted residual approach (PGFEM) [1,3], whereas the integral equations of 
the Boundary Element Method (BEM) are established by exploiting the Galer-
kin weighted residual technique and utilizing the fundamental solutions of the 
potential theory [4,5]. The success of both these methods in solid mechanics 
provided an initial impetus for their use in the field theory problems, governed 
by equation of mass, momentum and energy transfer. Soon it has been found, 
however, that to avoid numerical instability and a violation of fundamental 
physical constraints of the transport phenomena, special techniques are needed 
for proper discrete modelling of convection. Moreover, BEM, which seems to 
be very attractive due to a reduction of problem dimensionality, is still in its 
infancy and its applicability to fluid flow problems is very limited. On the 
other hand, although PGFEM is well established in this case, much should be 
done to improve its poor computational economy. 

On the other hand, a direct imposition of the physical conservation princi-
ple over small but finite control volumes, defined beforehand around nodal 
points distributed in the region considered, leads to the so-called Control Vol-
ume formulation, which is simple, clear and convincing for those who are not 
deeply involved in mathematics. This approach permits a direct physical inter-
pretation of the final algebraic equations of a computational model through an 
enforcement of the fundamental physical law of conservation of mass, mo-
mentum and energy. In consequence, it assures an accurate accounting of 
flows of these entities through each control volume and through the whole 
domain, irrespective of the pattern and density of the geometrical and time 
discretization applied. 

The Control Volume Finite Difference Method (CVFDM), based on this 
approach and on the finite difference approximation, is well established [6,7] 
and it has widely been used in the Computational Fluid Dynamics for more 
than twenty years. The main reasons of that lie in: 
- simple and physically justified way of founding CVFDM equations; 
- simple and economic algorithm of the method in general curvilinear ortho-

gonal coordinate system, provided that its metrics are given analytically; 
- regular and sparse structure of the global matrix for which the sophisticated 

and very quick solvers of a set of algebraic eqs have been elaborated; 
- availability of several very economic CVFDM software codes. 

There are, however, two serious drawbacks of the method. Namely, the 
poor accuracy in a coarse grid, due to the assumption of a constant gradient of 
the field quantity along each segment of a control-volume boundary, and diffi-
culties in a good approximation of irregular non-orthogonal domains. Both of 
them lead to need for a use of much denser grid than the one possible in the 
FEM discretization model. 



While a more general element-wise interpolation procedure is used in local 
integral balances one obtains the discrete model - further called Control-Vo-
lume Finite Element Method (CVFEM in abbreviation) [8,9,10,11]. This -
a quite new - numerical technique, which can be viewed as a generalization 
of the CVFDM [10], seems to be very attractive as it shares advantages of the 
physically justified control-volume formulation for the conservation principle 
and of the FEM discretization procedure. 

Nowadays the most efficient and flexible numerical simulation of nonlinear 
fluid flow and heat transfer in geometrically complex domains is based on the 
CVFDM or the FEM technique. However, the answer to the question which of 
them is superior is rather difficult, as their performance depends on many 
features of the problem considered. Nevertheless, some general conclusions, 
drawn from the author's analysis as well as taken from the literature on the 
subject, are collected in Table 1. 

T a b l e 1 

General Comparison of Finite Difference and Finite Element Models for Fluid Flow and 
Heat Transfer Problems 

METHOD 

ATTRIBUTE 

Control-Volume 
Finite Difference 

Method 
(CVFDM) 

Petrov-Galerkin 
(Galerkin) 

Finite Element 
Method 

(PGFEM or GFEM) 

Control-Volume 
Finite Element Method 

(CVFEM) 

Ease of coding very easy more complicated more complicated 

Flexibility good much better much better 

Accuracy per unknown fair better better 

Computational 
Efficiency 

good good good 

Mains strengths physical background 

ease of coding 

economy 

mathematical background 

close approximation of curvi-
linear geometry 

flexibility 

physical background 

close approximation of curvi-
linear geometry 

flexibility 

Main weaknesses poor approximation of curvi-
linear domain boundaries 

extension to higher order 
interpolation 

cumbersome modelling of 
boundary conditions 

economy 

violation of local conservation 
property 

economy 



Ease of coding is defined here as a programming effort and algebraic ma-
nipulations required to make the problem ready for calculation. It can be ap-
proximately quantified by using Paterson's formula: 

Ε = 5.2(L/1000)°·91 

D = 49 L101 

where: L — number of source code lines 
Ε — total effort in programmer months 
D — number of pages of documentation 

Flexibility means an inverse measure of a number of changes needed to adopt 
a written computer program to a new problem, whereas Computational Effi-
ciency (CE) can be estimated by: 

CE = — 
ε τ 

where: ε — the error solution in some appropriate norm 
τ — the CPU time or operation count 
к — proportionality constant 

The economy of a computer simulation is measured by the computational 
time and the memory size required. 

The above comparison shows that the most encouraging advantage of the 
FEM analysis of practical fluid flow and heat transfer problems is its simplici-
ty in approximation of curvilinear geometry on a coarse grid. This feature 
cannot be overestimated if one takes into account the fact that a solution of 
most field theory problems is very sensitive to even minor changes of the 
domain boundaries. 

On the other hand, it is also visible from Table 1 that the main draw-back 
of FEMs is their poor economy in comparison with the one inherent in the 
CVFDM. This conclusion is reported in many papers but only for a regular 
rectangular domain, which can be exactly reflected in a discrete model on 
a sparse difference grid. In this case there is no reason, except for a compara-
tive one, to use the FEM discretization. Moreover, this conclusion is not 
necessarily valid in the case of complex geometry, where the stair-case-like 
finite difference approximation of curved boundaries needs much denser grid 
than the FEM approximation does. 

Nevertheless, the poor computational economy still remains a major imped-
iment in a widespread use of FEM in modelling of practical fluid flow and 
heat transfer problems. Therefore, its improvement is a crucial task in theoreti-
cal and practical development of the method nowadays. 



It seems that there are two possible ways to change the FEM computatio-
nal economy for the better. The first one lies in searching for such modifica-
tions of the classical FEM formulations which provide a required accuracy of 
the approximate solution on coarser space-time discretization grids. Thus, 
a computational time and computer storage requirements can be significantly 
reduced. The second way consists in a use of sophisticated acceleration tech-
niques for the solving process, like the time-split and the approximate factori-
zation algorithms. They take their origin from the FDM analysis and the work 
is still in progress to utilize them in the way which enables to retain the versa-
tility of the FE discretization procedure. 

In this context, the available means for the improvement of the FEM com-
putational economy are further discussed in the paper. 

2. FEM EQUATIONS FOR CONVECTIVE-DIFFUSIVE TRANSPORT 
PROBLEM 

The physical conservation principle for a scalar field quantity Φ, transferred 
by convection and diffusion in a small but finite control-volume Q t , confined 
by the surface ΓΑ, has the following integral form: 

which states that a time rate of change of the quantity Φ can take place due 
to both a convective-diffusive flux through the boundary Tk and sources oc-
curring within the domain 

For an infinitesimally small control-volume the balance eq. (1) assumes 
a local differential form: 

In the above equation and all others in the paper Einstein summation con-
vection is used. 

The integral eq. (1) gives a basis for setting up the discrete nodal equations 
of the Control-Volume FEM, whereas eq. (2) is used in the weighted residual 
Petrov-Galerkin FEM. In the latter case the integral form of the governing 
equation is obtained by weighing the error of eq. (2), caused by the approxi-
mate solution, through the assumed weighing functions Wt within the whole 
domain Ω [1,3], i.e.: 

J | ( р Ф ) < / 0 + ~ K j ^ ] n i d T = [ s d Q 

f o r i , ; = 1 , 2 , 3 (2) 



fWkREZ{eq.(2))dQ = 0 for к = 1,2,...,NP 
Ω 

(3) 

Eq. (1) and eq. (3) are the model integral equations for convective-diffusive 
transport phenomenon. They express, in two different ways from mathematical 
point of view, the conservation of such quantities like mass, momentum com-
ponents or enthalpy. This means that when the fluid flow and coupled heat 
transfer problems are calculated, they are governed by the set of eqs (1) or eqs 
(3), each for different variables, i.e. for velocity components, for pressure or 
for temperature. Nevertheless, the form of any equation in both these sets is 
similar to the form of eq. (1) or eq. (3). Therefore, a proper discrete approxi-
mation of the single convective-diffusive transport eq. (1) or eq. (2) is a cru-
cial step in an accurate and efficient numerical analysis of the whole problem, 
governed by the continuity, Navier-Stokes and energy equations. 

To obtain the discrete form of these equations two subsequent discretiza-
tion steps should be performed, i.e.: the spatial discretization and then the 
integration over time. The former is based on, the above mentioned, element-
-wise interpolation procedure, whereas the latter can be done by using any of, 
the commonly utilized in finite differences, one- or two-step marching-in-time 
schemes [12]. 

The spatial finite-element approximation is based on a division of the do-
main considered into a set of the subdomains called finite elements. Over each 
of them an independent interpolation of the field quantity sought is assumed 
in terms of a sum of products of its nodal values and relevant interpolation 
polynomials [1], i.e.: 

φ ( ζ , ί ) = Л в ( с ) Ф я ( 0 for m = 1,2,...,ΝΦ (4) 

ut(C,t) = РД)ии(t) for i = 1 , 2 , 3 ; I = 1 ,2 , . . . ,N u (5) 

p{l,t) = QjX)pk(t) for к = 1,2, . . . ,Np (6) 
for temperature, velocity components and pressure, respectively. 

The shape of the element in the Cartesian coordinates, χ = ( χ χ , χ 2 , χ ^ , is 
given by the one-to-one correspondence (Fig. 2): 

xfC) = Mp{l)xip for i = 1 ,2 , or 3, ρ = 1,2, . . . , Ng 0) 

between the triplets of these coordinates and the local curvilinear coordinates 
ζ = (CŁ, Ca , Сз)-

Weighing and interpolation functions are usually defined in the way which 
ensures the C°-interelement continuity and thus each global integral (over the 
whole domain Ω) can be calculated as a sum of the corresponding element 
shares (integrals over the element domain Ωβ) [1]: 



fF(x)dΩ = £ f Fe(x)d£l 
Ω e ne 

(8) 

local system 
global system 

Fig. 2. Control-Volume division pattern for the bilinear element 

This discretization procedure possesses some appealing features. First of 
all, an independent approximation of geometry and each field quantity can be 
used by selecting different numbers of nodal points and different form of the 
relevant interpolation functions for coordinates, velocity, pressure and tempe-
rature. Moreover, the possibility of using high-order polynomials Mm enables 
the local boundary fitting of the element side to a small segment of the real 
boundary of the domain Ω. Thus, external curvilinear surfaces can be satis-
factorily approximated on a coarse grid. Finally, the procedure provides a tool 
for a use of non-structural gird, i.e. the grid with irregular shapes of subdo-
mains and with a different density in the different parts of the domain. 

On putting the element-wise interpolations, given by eq. (4) to eq. (8), into 
eq. (2), weighing thus obtained residuum, through the functions Wk, in the 
whole domain Ω (eq. (3)) and taking into account the boundary conditions 
(described in details elsewhere [1,2,3]), one obtains a set of ordinary differen-
tial equations in the following matrix form: 

C — +(K + K )Φ = R (9) 
dt У u> 

where: С, К, Ки and R denote, respectively, the capacity matrix, the diffusion 
and convection matrices and the right-hand side vector resulting from boundary 
conditions and internal sources, for the finite element method based on the 
Petrov-Galerkin technique [1,2,3]. The Galerkin FEM (GFEM), commonly 
exploited in the diffusive-type problems [1], is a particular case of the PGFEM 
where each Wk coincides with the appropriate interpolation function Nk. 



un me ошег папа, и ine г η aiscreiizauon aigontnm (eq. tq·; то eq. (,öjj is 
used to calculate the integrals in the balance eq. (1) over the control volume 
Ω .̂, defined beforehand for each nodal point A; as a sum of the volume frac-
tions Qk e of all elements which share the given node (Fig. 2), the nodal equa-
tion for the Control-Volume based FEM (CVFEM) is obtained [8,9,10,11]. The 
set of all these equations takes the matrix form given by eq. (9). 

The way chosen to spatially approximate the time derivative ЗФ/d í in eq. 
(1) or eq. (2) determines a form of the capacity matrix С and significantly 
influences the accuracy and stability of the FE solution to transient convec-
tion-diffusion problems [1,10,11]. When the spatial approximation of ЗФ/dt 
is assumed in accordance with eq. (4): 

ЭФ® / - \ i~\ 

the so-called Consistent Capacity Matrix model (C-model) is obtained where 
elements of the C-matrix are given as: 

NE NE 

ck,m = Σ / ° r c*,m = Σ / ρ W k N m d Q (10) «-1 Ω, e-l Qe 

for k ,m = 1 ,2 , . , . ,ΝΡ 

for the CVFEM or PGFEM, respectively. 
On the other hand, neglecting the spatial changes of 3 Φ β ί over a control-

-volume Ω^ or over an element leads to the diagonal capacity matrix of the 
following form: 

NE NE 

Ck,k = Σ / PdQ o r CKk = Σ / P W k d Q 
e=l η e=l Q (it) "Ke "k,e 

and C. „ = 0 for к * m Κ, Μ 

for the CVFEM and PGFEM, respectively. The model is further labelled as 
L-model (Lumped Capacity Matrix). 

To integrate eq. (9) in time, the one-step implicit finite difference scheme: 

Φ l+l = Φ l + QAt d Φ\ n+l 

I dt) 
+ (1 - θ ) Δ ί 

άΦ 
dt 

(12) 

where: 0 < θ < 1 is applied and thus the final set of algebraic equations of 
the FEM model takes a matrix form: 

\ \ "И ( 1 3 ) 

= ( c - ( l - θ ) Δ ί ( Κ + Κκ)Φ" + ΘΔίΚη+1 +(1 - θ ) Δ ί ϊ Ι η 



3. BEHAVIOURAL ERROR ANALYSIS FOR THE FEM MODELS 

3.1. Preliminary comments 

The commonly used error analysis for a discrete model gives an estimation of 
the truncation error, referring to inaccuracy caused by ignoring high order 
terms in an infinite Taylor series expansion of the unknown. This error, which 
is due to finite sizes of steps of both spatial and temporal discretizations, 
vanishes when the grid increments Δ*, and At tend to zero. This is, how-
ever, a dubious consolation as the complex mathematical description of fluid 
flow and heat transfer problems, given by a set of coupled nonlinear partial 
differential equations, usually forces a use of a grid with a finite density, due 
to still limited power and efficiency of contemporary computers. Moreover, to 
retain the computational economy of a numerical analysis one should deal 
with rather moderate grid densities. 

Unfortunately, finite sizes of space-time discretization steps can cause 
unacceptable quantitative and frequently even qualitative errors of an approxi-
mate solution unless a proper numerical model is developed. To make up such 
FEM models the behavioral error analysis, developed by R.P.Roache [13] in 
the FDM context, is used here. It means that the quality of the numerical 
analogue is judged in terms of how the physical features of the convection-
-diffusion transport phenomenon are reflected within the FE grid [14,15]. 
Really, for engineers and physicists such appraisal seems to be the most con-
vincing way for verifying a correctness of a numerical model employed. 

3.2. Conservation property 

The conservation property, which directly arises from the conservation princi-
ple for a scalar field quantity, is one of the most meaningful and desired fea-
tures of a credible numerical analogue. If a discrete model possesses this 
property, it means that the field quantity sought if correctly balanced within 
the domain considered and/or within its subdomains, irrespective of the discre-
tization pattern and the grid density used [13,15,16]. 

It is shown above that the FEM nodal equations can be established by two 
different ways, i.e.: by using the weighted residual approach to the governing 
PDE (GFEM or PGFEM) or by setting up the integral balance equation for 
the scalar quantity within the control-volume surrounding each nodal point 
(CVFEM). This gives the reason to distinguish two different forms of the 
conservation property for the FE analogues, namely: the global and the local 
ones [15,16]. 



The Ulobal conservation Property (UUťj is obtained it the № M solution 
satisfies the integral balance equation (eq. (1)) within the whole region Ω, 
irrespective of the discretization pattern, the element shape, weighing and 
interpolating functions used. Furthermore, when eq. (1) is applied to each 
control volume Qk bounded by imaginary or/and real boundary rfc, the Local 
Conservation Property (LCP) is achieved. 

The weighted residual technique consists in a global minimalization of the 
PDE residuum within the whole domain Ω (eq. (3)). Therefore, its individual 
nodal equation cannot, in general, be considered as the local balance equation. 
Therefore, only the global form of the conservation property can be associated 
with this model [15,16]. The sufficient condition for the GCP requires that 
a sum of all weighing functions Wk should be equal to unity at any point of 
the domain [16]. 

On the other hand, the CVFEM provides a numerical analogue inherently 
possessing the LCP, and in consequence also the GCP, owing to the fact that 
its nodal equation is obtained by setting up the local integral balance of Φ 
within the control-volume ΩΛ, confined by the boundary r t running inside 
those elements which share the common node k. 

The LCP, although not indispensable, is desirable as it frequently offers 
a better accuracy and less stringent stability requirements of the FEM solution 
in comparison with the ones obtained from the only globally conservative 
weighted residual FEM models. This is shown in [10,11,16,17] where the 
accuracy of the GFEM and CVFEM solutions is compared for the selected 
steady-state and transient diffusion test problems. 

3.3 Mass balance error 

In the FEM analysis of a convection-dominated problem a correctness of both 
mass and convected scalar quantity balances should be simultaneously taken 
into account [16]. A poor interpolation of a solenoidal velocity field over 
a coarse low-order FE grid can cause the mass balance error which might 
significantly influence the accuracy of the FEM solution for the scalar quanti-
ty sought. To reduce this inaccuracy, one can establish the PGFEM (GFEM) 
nodal equations on the basis of non-conservative form of eq. (2) [15,16]. In 
the CVFEM the same effect is achieved when the local integral balance of Φ 
within the control-volume is set up for a corrected amount of mass comprised 
in this subdomain [15,16]. The FEM models thus obtained are likely not to 
satisfy the GCP but they provide more accurate results for the problems tested 
([16]). This is because the impact of inaccuracy in an approximation of the 
continuity condition (which is in force for an incompressible fluid) over the 
FE grid on the calculated field quantity is significantly reduced [15,16]. In 
consequence, an acceptable accuracy of the FEM solution can be often 
achieved on a coarser mesh. 



To show this, a practical problem of the free convection in a channel of 
a square cross-section has been solved [16]. Two different weighted residual 
FEM models, based on the Galerkin method, are compared on the nine-node FE 
grid, where velocity components and temperature are interpolated by the biqua-
dratic polynomials whereas pressure is interpolated by the bilinear polynomial 
within each element domain ([18]). The first model (further named with the 
abbreviation GFEM-D) is based on conservative form of the PDE for the ener-
gy balance (eq. (2) where Φ stands for temperature). The second one (GFEM) 
is developed using the non-conservative form of eq. (2), which through the 
continuity condition is differentially equivalent to the previous form. 

Geometry and boundary condition for velocity components and for tempe-
rature are given in Fig. 3. The mixed FEM model [18] is used along with the 
technique of simultaneous solution of a coupled set of the continuity, momen-
tum and energy equations. It means that the intermediate mass balance correc-
tion at each iteration step, inherent in the SIMPLE-like algorithms commonly 
used in the FDM calculation (e.g. [6]), is not applied here. 

Ui=U2=0 

Æ 
Ui=U2=0 ЭФ/Эл=0 

G RID: 

20·20 nine-node elements 
1681 nodes 
5484 nodal unknowns 

Fig. 3. Free convection in a square channel — geometry, velocity and temperature boundary con-
ditions, stream- and isothermal-lines obtained 

The results obtained for the Grashoff number Gr = 105 in the dense grid, 
consisted of 20-20 nine-node elements, are given in Fig. 3 in terms of both 
stream- and isothermal-lines. The GFEM and GFEM-D solutions are here 
graphically indistinguishable. In the 2x2 time coarser grid, however, the 
GFEM-D solution exhibits incorrect run of the isothermal lines (Fig. 4). Fotru-



nately, this is not observed for the GFEM solution (Fig. 4) which is close to 
the one obtained in the dense grid (Fig. 3). In the GFEM and GFEM-D calcu-
lations the same discretization pattern, the same velocity, pressure and tempe-
rature interpolations and finally the same FEM procedure for the continuity and 
momentum equations have been applied. The only difference between these 
two models lies in the form of the energy PDE used to obtain its weighted 
residual FEM analogue. Therefore, one can conclude that the different accuracy 
of each of them results mainly from the impact which the mass balance error 
has on the accuracy of the calculated temperature. 

GRID: 
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441 nodes 
1444 nodal unknowns 

GRID: 

10·10 nine-node elements 
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Gr= 105 

Fig. 4. Comparison of GFEM and GFEM-D solutions for temperature in the free convection 
problem calculated on the coarse grid 

Good agreement of the GFEM solution on the coarse grid with the one ob-
tained on four times denser grid (Fig. 3 and Fig. 4) enables to accept the for-
mer disctertization as a sufficient one for the FEM analogue in which the in-
accuracy of the velocity interpolation does not significantly influence the tem-
perature obtained. In consequence, the number of nodal unknowns can be 
diminished 3.8 times (from 5484 to 1444) and thus considerable savings of 
both the computer storage and the computational time are achieved. 

3.4. Discrete maximum principle 

One of the most important properties of the convective-diffusive transport 
phenomenon is the maximum principle which provides the physical limits on 
extremum values of the unknown. For instance, when the heat conduction 



with no heat source is considered, then the principle states that both the maxi 
mum and the minimum values of temperature can only occur on the domain 
boundary or at an initial time. 

If a numerical model does not preserve this principle within a division grid 
(i.e. the discrete form of the maximum principle [19]), its solution may exhibit 
strong spatial and temporal oscillations and it may even take values which are 
outside the physically justified range [11,15,17]. To avoid this error in the FEM 
analysis one should select the space-time discretization pattern in the way which 
ensures the fulfillment of Ciarlet matrix criterion [19], which imposes inequality 
relations for individual terms of the capacity and diffusion matrices [17]. They 
provide restrictions on the grid Fourier number, on a ratio of the spatial division 
steps and on the θ parameter of the time marching scheme (given by eq. (12)). 
Their thorough examination leads to the conclusion that they are less stringent 
for the CVFEM than for the GFEM. Furthermore, the L-model of the capacity 
matrix has only the upper bound for the grid Fourier number whereas the 
C-model possesses both the lower and the upper limits [17,20]. 

3.5. Upwind technique in FEM models 

Convection is a one-way transport phenomenon, i.e. the convected scalar qu-
antity is travelling only along the direction of the velocity vector, downwind 
to the flow. Unfortunately, the classical FDM and FEM models do not neces-
sarily obey this physically meaningful requirement unless the discretization 
grid is sufficiently dense. This can provide considerable spatial oscillations of 
a numerical solution, called wiggles [3,11,14], particularly in the case where 
a strong gradient of the transported variable occurs along the streamlines. 

To give an image of a size of the error, the GFEM solution is presented in 
Fig. 5 for the energy equation of the forced convection developing flow in the 
channel of a square cross-section. The problem has been solved [14] using the 
mixed FEM model ([18]) on the biquadratic nine-node element grid ([1]) with 
the Lagrange polynomial interpolation and weighing functions. To force 
a strong gradient of the dimensionless temperature Φ, its unit value is as-
sumed on the outlet of the channel. 

The GFEM solution exhibits strong spatial oscillations and its value ex-
ceeds physically meaningful limits. Moreover, the CVFEM provides essential-
ly the same incorrect solution when Lagrange polynomials are taken for the 
interpolation functions [14]. 

To suppress wiggles, either a very dense FE grid should be used or special 
upwind techniques, similar to the ones commonly incorporated in the FDM 
models [6,13], should be developed. In the PGFEM, the convective movement 
upwind to the flow is eliminated by using high order unsymmetric polyno-
mials Wt for weighing process given by eq. (3) [1,3]. This way cannot be 
used, however, in the CVFEM where the weighing technique is not exploited. 



χ 

Fig. 5. FEM solution of temperature along the channel axis for the forced developing convection 

The effect of upwinding can be obtained here by the development of the flow-
-oriented form of the interpolation function for the field quantity Φ, i.e.: the 
form which depends on both the direction and intensity of convection 
[8,11,15,21,22]. Although several such techniques have been proposed in the 
literature for the triangular ([8]) and rectangular ([11,15,21,22]) FE grids, 
there is no a general way to obtain the consistent approximations of all terms 
in the balance equation (eq. (1)). Therefore, a choice of any individual tech-
nique should take into account some characteristic features of the problem 
considered, like the scale of expected flow recirculations, the importance of 
the source term in the balance eq. (1) and the direction of the convective 
transport ([15]). 

It is a common way to use the upwind procedures, developed for the ste-
ady-state problem, in numerical modelling of the transient convection domi-
nated flows, in hope that they also perform fairly well in this case. Unfortu-
nately, this is not necessarily true due to a considerable dispersion error 
which may occur when an approximation of the temporal term of eq. (1) is 
not properly defined. The source of this error and some remedies available are 
further discussed in the subsequent paragraph. 

3.6. Numerical dispersion on FE grid 

The transient dominated convection is of a great practical importance, as in 
a fluid flow far away from a wall the diffusion is negligible, and this leads to 



the problem of a proper modelling of the almost pure convection transport on 
the FE grid. Indeed, the special care is needed here because the commonly 
used discretization models may cause the substantial dispersion error of the 
CVFEM and GFEM solutions [23,24,25]. 

For example», the lumped capacity matrix model (L-model), inherent in any 
FDM approximation and highly desirable in FEMs for a diffusive-type prob-
lem, cannot be accepted here, unless a very dense grid is used, due to its 
considerable dispersion error. 

This is visible in Fig. 6, where the CVFEM and GFEM solutions are given 
to the benchmark problem of a pure convection of the scalar quantity Φ in 
a rotation velocity field ([24]). As the physical diffusion does not occur, the 
initial shape of Φ (given as a cone) should not change when Φ is convected 
in the domain. The numerical results, obtained after a complete revolution, are 
presented in Fig. 6 for both capacity matrix models. They reveal that: 
- the L-model provides the solution of an unacceptable accuracy. It exhibits a 

considerable deformation of the initial shape and a significant reduction of 
the cone height. The latter error is further called the numerical dissipation; 

— numerical dissipation is much smaller for the consistent capacity matrix 
model but the spurious waves behind the cone (Fig. 6) cannot be physical-
ly justified. 
A usual way to examine the dispersion error, consisted of both the numeri-

cal dissipation and phase-shift errors, is via Fourier mode analysis of a dis-
crete solution to the constant velocity pure convection problem [23, 24]. Upon 
the assumption that the continuous model (governed by the PDE for convec-
tion) properly describes physics of the phenomenon considered, Fourier series 
representation of the continuous model solution is compared with the relevant 
representation of its numerical counterpart. In the papers [24] and [25] Fourier 
mode analysis is used to compare errors of the CVFEM and GFEM solutions 
on a uniform rectangular grid and then to provide simple means to improve 
the performance of the control-volume based FEM. 

It reveals that the potential inaccuracy of the FEM solution comes from the 
spatial approximation of the temporal and convection terms of the transient 
convection equation (eq. (1) or eq. (2) with λ( j = 0) and that the one-step im-
plicit time-stepping scheme (eq. (12)) hardly influences the dissipation and the 
phase-shift errors. 

Moreover, the comparison between the GFEM and CVFEM models shows 
that the latter model is visibly inferior in the convection dominated problems 
owing to its substantial dispersion error. Therefore, simple and no-time con-
suming means have been proposed [24,25] to improve the performance of the 
CVFEM for the transient pure convection transport problem. They consist in 
the spatial integration of the temporal term of the nodal balance equation in 
the way which ensures higher accuracy of the CVFEM model and in a use of 
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Fig. 6. GFEM and CVFEM solutions for convection of a cone in a rotating fluid 

the Taylor series time representation of Φ including the second- and the 
third-order time derivatives. This significantly reduces both the numerical 
dissipation and dispersion and the model thus obtained (CVFEM-TM) offers 
the accuracy comparable to the one of the Taylor-Galerkin FEM (GFEM-T in 
Fig. 7) proposed in the paper [23]. The use of this special means in a develop-
ment of the CVFEM model for the benchmark problem of the pure convection 
in the rotating fluid gives the solution which is not spoiled by visible numeri-
cal dispersion (compare Fig. 6 with Fig. 7). 



Fig. 7. CVFEM-TM and GFEM-T solutions for convection of a cone in a rotating fluid 

Moreover, the better approximation of the temporal term of eq. (1), obtained 
by a retention of the higher order derivatives in Taylor series time expansion of 
Φ, provides the additional diffusive flux which operates only in the streamline 
direction. This simply forms the streamline upwinding in the CVFEM for 
transient convection dominated problems, which is similar to the balancing 
tensor dijfusivity technique developed by P.M.Gresho for the GFEM [26]. 



3.7. Conclusions 

The inaccuracy of the FEM solution caused by the wiggles, mass balance 
error, numerical dissipation and a violation of the conservation and maximum 
principles can be significantly reduced by the use of a very dense space-time 
discretization grid. This is, however, not reasonable from the computational 
economy point of view. Fortunately, simple and no-time consuming modifica-
tions of the classical FEM formulation, discussed above, give the same result 
but over a coarse FE grid. This, in turn, provides considerable savings in 
computer time and storage required for the FEM calculations of the connec-
tive-diffusion problems. 

Moreover, it is shown above that the accuracy and computational efficiency 
of the FEM approximation of the convection-diffusion transport of the field 
quantity Φ depend on a proper choice of the discrete model, where the direc-
tion and intensity of convection and the intensity of diffusion should be taken 
into account. For example, for the diffusion-type problem the lumped capacity 
matrix model is a reasonable choice from the stability and early-time solution 
accuracy points of view. On the other hand, in the case when convection 
dominates (moderate and high Peclet numbers), the consistent capacity matrix 
model significantly reduces numerical dissipation and dispersion. 

Hence, there is not a general FEM model, equally accurate and efficient for 
both the convection dominated problem and the diffusion dominated one. 
Each of them needs, therefore, individual approach. For each of them different 
optimal discrete models should be used to obtain efficient numerical tech-
nique. 

In the fluid flow and heat transfer problems where, in general, a coupled 
convection-diffusion transport occurs, this can be established through a use of 
the component-by-component splitting-up method [27]. The convection and 
diffusion are treated there in two distinct phases of the time integration proce-
dure. The method has been used by J. Donea [23] and B. Ramaswany [28] in 
the context of the Galerkin FEM. This paper presents its utilization to the 
Control-Volume based FEM [29]. 

4. EFFICIENT TIME INTEGRATION ALGORITHM FOR CONTROL-
-VOLUME FEM 

4.1. Preliminary comments 

The splitting-up technique enables to take the most optimal spatial and tempo-
ral discretization models as well as the most efficient solvers of a set of alge-
braic equations independently for convection and diffusion. 



Hence, the unsteady diffusive problem is solved here with the lumped ca-
pacity matrix model and by a use of the successive over-relaxation iteration 
method (SOR) [30] or the conjugate gradient method [31] for the final set of 
algebraic equations obtained. On the other hand, to avoid significant dispersion 
and dissipation errors of the approximate solution as well as to perform the 
streamline upwinding the Taylor series expansion of the temporal term, includ-
ing the high-order time derivatives is applied in the CVFEM formulation of the 
pure convection problem [24]. The set of linear algebraic equations is solved 
by LTDMA solver [6] or by the approximate factorization technique [23]. 

To decouple the continuity and momentum balance equations in the 
CVFEM, the fractional step method (also called the velocity correction algo-
rithm) is used. This technique was originated by Chorin [32] in the FDM and 
it was successfully applied recently in the GFEM [28,33]. At first, the mo-
mentum balance equations are solved, disregarding the pressure gradient 
terms. Then, the provisional velocity field thus obtained is corrected by taking 
into account pressure contributions through an enforcement of the incompress-
ibility requirement. The CVFEM algebraic equations, resulting from the Pois-
son-like equation for the pressure, are solved by the SOR or the conjugate 
gradient methods [29]. 

Strict enforcement of the continuity constraint, at every stage of the itera-
tive process in the fractional step method, ensures that no spurious pressure 
modes appear in the FEM solution and thus equal-order pressure and velocity 
interpolations can be successfully used. 

The question of cost effectiveness of the FEM solutions is still of the main 
interest in numerical modelling of practical, multidimensional fluid flow and 
heat transfer problems. It is commonly known that the FDM is superior in 
terms of the computer storage and execution time requirements. This mainly 
results from a use of the segregated velocity-pressure solution technique [6] 
where velocity and pressure are solved sequentially at each iteration or time 
step. On the other hand, most of the published FEM solutions to fluid flow 
have involved direct simultaneous solution of the continuity and momentum 
discrete equations [18], which is much more time consuming and requires 
large amount of computer storage. In recent years, however, a few papers 
have appeared, where the successful use of the segregated solution technique 
in the Galerkin FEM is reported (e.g. [28,33]). In the present study, this tech-
nique is applied in the CVFEM formulation. 

The linearized momentum equations for each velocity components are 
solved sequentially and independently and they are followed by solving the 
pressure equation and by the velocity correction procedure at each iteration 
step. 
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The dependent variables, which are of interest in the fluid flow and heat transfer 
problems, i.e.: mass, components of momentum and enthalpy, obey, respectively, 
the following integral balance eqs within the control-volume Qk surrounding the 
node к (i.e.: eq. (1)): 
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where in eq. (16) the viscous dissipation of an incompressible fluid is neglected. 



The problem governed by eq. (14) to eq. (20) is decomposed into three 
simpler problems, i.e. convection, diffusion and continuity ones, being consec-
utively solved more effectively with a computer. 

At first, disregarding the pressure contribution, the transient convective 
transport of momentum is solved for the intermediate velocity components u* 
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dt 
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for i,j = 1 , 2 , 3 (21) 

To avoid the significant numerical dissipation and dispersion inherent in the 
classical FEM formulation for the pure convection problem, Taylor series 
expansion of the local derivative ЭФ /dt of any field quantity Φ, including 
the high-order time derivatives, is applied [24]. This leads to the following 
balance equation referred to the control-volume Ω .̂: 
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for Φ = щ , where I = 1, 2, 3. The CVFEM approximation of the problem 
governed by eq. (21), with the velocity field u f known from the previous time 
step (previous iteration), is obtained from eq. (22) with θ = 0 for each compo-
nents of the intermediate velocity field Φ ξ u * interpolated by eq. (5). The 
sets of the algebraic equations thus obtained are solved separately for each 
components u* by using the efficient LTDMA solver [6] or by the approxi-
mate factorization technique [23]. 

Next, the nodal values of и * at tn + l are used as the initial ones for the 
velocity components üt obtained at the end of the time step by taking into 
account the diffusive transport of momentum governed by: 
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The lumped capacity matrix model (eq. (11)) is taken here and the above equa-
tions are solved separately for each momentum components. They are integrated 
in time using the second-order accurate, unconditionally stable Crank-Nicolson 
scheme (eq. (12) with θ = 0.5). The final set of algebraic equations is then 
solved by the SOR or the conjugate gradient techniques. 

Thus computed velocity field does not generally satisfy the incompressibility 
condition. Hence, it is further corrected by taking into account the pressure 
contribution to the solenoidal velocity field through the continuity and momen-
tum equations. The final velocity field u"*1 at the end of the time step should 
satisfy the mass conservation principle for incompressible fluid referred to the 
control-volume Ω4 confined by the boundary 
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The pressure gradient is a factor which forces a correction of the velocity at 
tn+l in the way which ensures a fulfilment of the incompressibility condition, 
hence: 
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Taking the divergence of eq. (25) and eliminating щ 
obtains: 
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The pressure is interpolated within each element in accordance with eq. (6) 
but for Qk(ζ) = Ρt(0 and Nu = Np. It means that the equal-order pressure 
and velocity formulation is taken in the algorithm presented. The algebraic set 



of eqs (26) is solved by means of the SOR or conjugate gradient methods. 
Once the pressure nodal values have been thus determined the velocity com-
ponents u"+1 are calculated from eq. (25). 

Eventually, the velocity field, satisfying the incompressibility condition at 
the end of the time step, is used to calculate enthalpy (or temperature) through 
the energy equation (16). At first, the pure convection transport of energy is 
analyzed 
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with (27) 
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by using the equation (22) with Φ = h*. The set of algebraic equations thus 
obtained is again solved by the LTDMA method or by the approximate fac-
torization technique. The nodal values of the intermediate enthalpy h* at time 
tn+1 are then used as the initial ones for the final h"+l, obtained at the end of 
time step by taking into account the diffusive transport of energy: 
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The lumped capacity matrix model (L-model) is taken here and the above 
equations are integrated in time using the unconditionally stable Crank-Nicol-
son scheme (eq. (12) with θ = 0.5). The final set of algebraic equations is 
then solved by the SOR or the conjugate gradient techniques. 

4.3. Numerical examples and conclusions 

The accuracy and efficiency of the algorithm presented have been verified by 
solving a few specific test problems ([29]), commonly regarded in literature 
(e.g.: [28,34]) as the bench-mark ones for the comparison of alternative nu-
merical models. The details of geometry, boundary conditions and the finite 
element grid used are given in Fig. 8, Fig. 9 and Fig. 10 along with the calculat-
ed velocity, pressure and temperature fields for three pertinent examples chosen. 



The sudden expansion problem is commonly used as the benchmark test to 
verify if no spurious pressure modes appear in the approximate solution. It is 
applied here to find whether the equal-order velocity-pressure formulation can 
be taken in the fractional step approach with the segregated solution technique 
for the Control-Volume FEM. The geometry of the flow domain (0 < xx < 6 , 
0 < x2 < 2 with upward facing step of expansion 1:2) is depicted in Fig. 8. 
The boundary conditions are assumed as follows. At the top and bottom walls 
Mj = 0 and u2 = 0, whereas at the inlet ux = 4x 2 ( l -x2j, u2 = 0 and at the 
outlet ди1/дх1 = 0, u2 = 0 , p = 0. The regular, rectangular grid ( Δ ^ = 0.25, 
Δχ2 = 0.1) of 400 bilinear elements is shown in Fig. 8 along with the steady 
state distribution of streamlines and pressure contours, calculated with 
At = 0.1 in the case where Re = 50 ( μ / ρ = 0.02) at the inlet. 

Fig. 8. Geometry, FE grid, streamlines (ψ) and pressure contours (Ρ) for flow through 
a sudden enlargement 



t = 8.0 steady 
state 

Fig. 9. Geometry, FE grid, streamlines (ψ) and pressure contours (P) for lid driven cavity flow 



Fig. 10. Streamlines and isothermal lines for free convection in a square enclosure with Gr = 106 



Next, to examine the performance of the CVFEM algorithm for recirculat-
ed flows the problem of flow in a closed cavity (0 ^ jCj £ 1, 0 ^ x2 <. 1) 
driven by the lid movement has been considered. The lid moves with a unit 
velocity (Mj = 1.0) in its own plane. The no-slip boundary condition is assu-
med on the remaining walls. The flow is completely determined by the Rey-
nolds number, defined for the lid velocity, i.e.: Re = ρ и 1 / μ . The nonuniform 
grid of 900 bilinear finite elements (Fig. 9) and Δ t = 0.04 were used in the 
case of Re = 1000 (i.e. μ /ρ = 0.001). The results obtained are given in Fig. 
9 in terms of streamlines and pressure contours at t = 8.0 and for the steady-
-state case. 

Eventually, to verify the algorithm accuracy in the coupled fluid flow and 
heat transfer, the laminar free convection in the square enclosure has been 
analyzed for different angles of inclination. The undimensional domain is con-
fined by 0 ^ JCj ^ 1 and 0 ^ x2 ś 1. The lower and upper walls are as-
sumed to be adiabatic ones (κχ = u2 = 0, дФ/дх2 = 0, Φ - undimensional 
temperature) More-over, Mj = u2 = 0 at the vertical walls. The left one is 
maintained at constant undimensional temperature Φ = 0.5 and Φ = -0.5 is 
taken at the right wall. Exemplifying results obtained are given in Fig. 10 for 
Grashoff number Gr = 106 in terms of steady-state distribution of streamlines 
and isotherms, obtained on the nonuniform grid of 2500 bilinear elements. 

An effective computing technique has been presented for calculating the 
transient incompressible viscous flow and coupled heat transfer by means of 
the Control-Volume FEM. This technique is based on the velocity-pressure 
formulation, splitting up and fractional step methods. The preliminary results 
for the test problems presented in Fig. 8 to Fig. 10 show that the solutions ob-
tained are free from the wiggles and spurious pressure modes and that they fit 
fairly well to the results presented by B.Ramaswany [28] and M.Strada [33]. 
Moreover, due to a use of the segregated solution technique the better compu-
tational efficiency has been obtained in comparison with the one of the simul-
taneous solution algorithm [18] and thus the computational economy is much 
closer to the one reported elsewhere (e.g.: [6]) for the CVFDM. 
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O PEWNYCH TEORETYCZNYCH I PRAKTYCZNYCH ASPEKTACH 
EFEKTYWNEGO MODELOWANIA ZJAWISK WYMIANY CIEPŁA 

NA SIATKACH ELEMENTÓW SKOŃCZONYCH 

S t r e s z c z e n i e 

W pracy przedstawiono porównanie współczesnych technik numerycznych stosowanych 
w symulacji komputerowej ruchu płynu nieściśliwego i wymiany ciepła z uwzględnieniem ich 
dokładności i efektywności obliczeniowej. 

W szczególności, rozważono sposoby przyspieszenia obliczeń realizowanych metodą ele-
mentów skończonych, opartą na technice reszt ważonych Galerkina lub na bilansach masy, 
pędu i energii w objętościach kontrolnych. 

Weryfikacja warunków poprawności fizykalnej rozwiązania numerycznego, obejmującej 
spełnienie zasad zachowania i maksimum oraz poprawne modelowanie dyskretne zjawiska 
przenoszenia konwekcyjnego, została wykorzystana w tworzeniu modeli elementów skończo-
nych o zadowalającej dokładności na rzadkich siatkach podziału. 

Ponadto, budowa algorytmu obliczeniowego na podstawie techniki rozdziału w czasie, 
w której udział poszczególnych form przenoszenia, tj. konwekcji i dyfuzji, modeluje się nieza-
leżnie, pozwoliła na dobór najbardziej optymalnych i efektywnych postaci przestrzenno-czaso-
wej dyskretyzacji dla każdej z tych form transportu wielkości polowej. 

О НЕКОТОРЫХ ТЕОРЕТИЧЕСКИХ И ПРАКТИЧЕСКИХ 
АСПЕКТАХ ЭФФЕКТИВНОГО МОДЕЛИРОВАНИЯ ЯВЛЕНИЙ 

ТЕПЛООБМЕНА НА СЕТКАХ КОНЕЧНЫХ ЭЛЕМЕНТОВ 

К р а т к о е с о д е р ж а н и е 

В работе дано сравнение современных численных техник, применяемых при 
моделировании на вычислительных машинах движения несжимаемой жидкости и те-
плообмена с учетом их расчетной точности и эффективности. 

В особенности рассматривались способы ускорения расчетов, осуществляемых 
методом конечных элементов, основанным на технике взвешиванных погрузок 
Галеркина или на балансах массы, энергии и количества движения в контрольных 
обьменах. 

Верификация условий физической правильности численного решения, охваты-
вающей выполнение закона сохранения и максимума, а также правильное дискрет-
ное моделирование конвекционной передачи, была использована при создавании 
достаточно точных моделей конечных элементов в редких сетках деления. 

Кроме того, структура вычислительного алгоритма на основе техники разде-
ления во времени, при которой участие отдельных форм передачи, то есть кон-
векции и диффузии, моделируется независимо, позволяет выбрать наиболее опти-
мальную и эффективную форму пространственно-временной дискретизации для 
каждой из этих форм передачи полевой величины. 


