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CONDENSATIONAL GROWTH OF DROPLETS

An analysis of vapour condensation on droplets is presented. General approximate expressions for the
parameters of the droplet mass distribution function are derived from the analytical solution. These
expressions are valid for a broad class of droplet mass growth rates and arbitrary initial distributions.
The accuracy of these expressions is investigated and the errors are found to be small. The method
of moments for log-normal and gamma distributions is applied to the problem of vapour condensa-

tion. Some approximate formulas for parameters of these distributions are derived and their accuracy
is investigated.

Nomenclature

e — relative error

g — condensational mass growth rate, [s™']

m — mass, [kg]

M - total mass of droplets per unit volume, (kg -m~]

n  — droplet mass distribution function, [kg™! -m™]

N - total number of droplets per unit volume, [m=>]

t — time, [s]

Subscripts

max — the value of mass at which droplet mass distribution function attains
maximum

0 — the initial value

INTRODUCTION

The problem of condensation of vapour on droplets or solid aerosol particles is
important in many different areas, including atmospheric physics [8], [9] and
nuclear reactor safety [10], {11].



Usually we are interested in the evolution of the droplet mass distribution
function when the condensational mass growth rate of a droplet and the initial
distribution are known.

Some exact analytical solutions obtained before [5] are used for derivation of
useful approximate formulas and their accuracy is investigated.

Two initial distributions are considered, namely log-normal and gamma
distributions with different parameters. The method of moments is used for
investigation of these parameters and some approximate formulas are derived.

The investigations presented here are illustrated by some numerical examples.

1. THEORY

The balance equation for the condensation of a vapour on droplets with given
initial condition has the form

on(m,t) _ _ 3d . 1
o = 5, [8(m)n(m,0)] M
n(m,0) = ny(m) 2

where n(m, t) is the droplet mass distribution function (defined so that n(m, t)dm
is the average number of droplets per unit volume with masses between m
and m +dm at time ¢), g(m,t) is the condensational mass growth rate of
a droplet and ny(m) is the initial droplet mass distribution function.

In most cases of practical importance we may assume that

g(m,t) = h(t)f(m) (3)

The solution of the initial value problem (1), (2) can be obtained by the

method of characteristics [5], [11]. When the assumption (3) is valid, it has
the form

F(m) -H(t) = F(t) “4)
n(m,t) = ]% ny(t) 3)

where
F(m) = [ 2™ ©6)

o S(m')



H(t) = fh(t')dt' M
0

It follows from physical considerations that the functions k(¢) and f(m)
are real positive functions of real positive arguments. Hence, F(m) and
H(t) are real positive increasing functions of m and ¢, respectively. Obvious-
ly, F(0) = H(0) = 0.

Since n, is defined for nonnegative values of argument, then it follows
that © > 0. Moreover, from eq. (4) it follows that m(<,t) > © for any ¢ and
that m(t,?) is an increasing function of time.

If ny(m) =0 for m < my, then the distribution n(m,t) moves to the
right along m axis, when time increases and m,(t) is an increasing function
of time (obviously m, can be equal to zero and really it is in most cases).

Similarly, m,(t) increases with time for any m,(0) > m,.

If m,(0) > m,(0) > m,, then

Amy,(t) = m,(t) - m, (t) ®

increases with time. When the initial distribution n,(m) attains its maximum

at the value m_, , then n(m,t) has the maximum at the value m_, ().
It can easily be seen that

Am,, (t
am (1) = 27 ©
Mipax (£)
decreases with time.
From eq. (5) it follows that
flv =m.)
n_ () = nm__(2),t] = o n(t=m_)
‘max [ ‘max ] f[m(‘c - mmax)] 0 ‘max
and since m__ (t) and f(m) are increasing functions, then
f(r = mmax) < f[m(r = mmax)] and n__ (2) < ny(m_, )
Therefore, the ratio R
n t
R(t) = mﬂx_() (10)
no(mm)

is less than unity.
It follows from eqs. (4) and (6) that
dm _ f(m)
dr  f(7)



Therefore, it results from eq. (5) that
my (1) "y

fn(m,t)dm = fno(t)dr (11)

my(t) my

for any m, > m, >m,.

One can notice that, in particular, the number of droplets with masses lying
in the interval [mo(t), mmax(t)] does not change with time and is the same as
for the initial distribution.

Some exact analytical solutions and useful approximations can be obtained
when

f(m) = am®

It results from the research of Barrett and Clement [1], [2] that the above
formula is valid for the case, when radiative heat flux from droplets is ne-
glected. In a free molecule range ¢ = 2/3 and in a continuum range o = 1/3.

From egs. (4)-(7) it follows [5] that

m(t,t) = [.cl—u +(1 _a)aH(t)]Tlu (12)
and
m(t) = m(z = mye) = [m"®+ (1 - a)aH(t)]Tla (13)
for any m; > my.
The ratio R(z) can be expressed in the form
RO = -— (14)

l1-a
+

[ + (1 - @) aH(1)]'*

It is easily seen from the above considerations that the total mass of drop-
lets per unit volume M(t) can be expressed in the form [5]

M) = [mn(m,0ydm = [m(x,0)ny(c)dz (15)
0 0

Some useful approximations can be made when

l-a
i

L ——— |
(1 -a)aH(t)

m



Taking into account only first two terms in the series expansion of m, (%),
one gets the approximate expressions

1 1-e

m(t) = () = [(1-a)aH@®]' " * 1o ™ | a3
(1-a)aH(2)

Amp,(t) = A, (f) =

] e (8%)
— _ 1-a 1-a _ 1-a
T [(1 a)aH(t)] (m2 m, )
Am (t) = Afi (f) =
= 1 [(1 - a)aH(t)]‘l (ml—a _ml-a) (9*)
(1-a) T 2 1
R(t) = R(t) = m3 [(1-a)aH@)] ™ (144

When n,(t) # 0 only for sufficiently small values of t, then

M) = fmn(m,t)dm =
0

~ M(t) = m(0,1) fno(t)d'r = m(0,1)N,
0

where M is the total mass of droplets per unit volume and N is the total
number of droplets per unit volume (obviously N(z) = N,).
From eq. (12) it follows that

1
M(t) = M(t) = [(1- «)a H()]'™* N, (16)

The considerations presented above are quite general and do not require the
knowledge of the initial distribution. However, more information about the
droplet mass distribution function can be obtained when the initial distribution
is specified.

Two distributions are especially interesting, namely log-normal and gamma
distributions.



The method of moments gives the possibility to obtain quite simply ap-
proximate solutions with good accuracy [6], [7], [10], [11].

a) the log-normal distribution is given by
nomy = —N _ Loxp |- L{ 2 an
Qno)2 m 20 m,

and is characterized by three parameters: N, m, and o. The set of equations
for parameters has the form

% = am, g ~(1-a")0/2 (2 - e"(l_“)o) (18)
dt
do e-1 _(1-a)a/2 [,-(1-a)o
29 _2am®le e -1 19
dt 0 ( )

There is no equation for N, since N(t) = const. The initial conditions
have the form

my(0) = my,, 0(0) = o, (20)

Dividing eqgs. (18), (19) side by side, one gets the equation
dm, 1 2 -e (Ire)e

do 2 e (1-e)o _ 1
which has the solution, satisfying the initial conditions, in the form

1 1
-1 - CYTIY BTy 21
m, = mooeco [1 —e a c‘)00]2(1-«;) e [1 _e—(l—u)o] 2(1-u) (21)

The substitution of m, into eq. (19) gives the equation
1 3
ﬂ — _2amo’0(1 “u)e’(l‘a)"o (1 __e"(l"“)co)_—ie(l—u)20/2(1 _e—(l—u)u)-Z- (22)
dt

This equation can be solved analytically when one assumes that (1 -« )?=1 -0,
i.e. when o < 1. The approximate solution has the form

oG = m(ui) @3)

l1-a t?
where

A ={(1-a)a]?my'™ eX17%)% (1 -e_(l—“)"“) (24)



Since A/t2 < 1, then

1 A

G = =
1-a ¢2

Taking into account that ¢ < 1, one gets from eq. (21)

1
iy(2) = [(1 - a)a]' "

Q

m (1)

L
m,. (1) = [(1 - a)at]l""

2

My ()

For the log-normal distribution

M = Nmye°?
then

1
M(t) = M(?) = [(1-a)at]'™* N,
b) the gamma distribution is given by
_ N 1 (mY m
n(m) = ——— — | —| exp|-—
T'(v+1) my\m, m,

The set of equations for parameters has the form

dm,
° - 20 -Damy L Derv+1)

dt v+l TI(v+1)
ﬂ = 2(1 —a)am:_l P(—a-‘-_v_i.l_z
dt T(v +1)

The initial conditions have the form

my(0) = myy,  v(0) = v,

(23%)

(25)

(26)

(16"

@27)

(28)

(29)

(30)

Dividing the above equations side by side and solving the resulting equation

with initial conditions, one gets

1-2a _ 12«
- 2(1~ 2(1-
my = My (v + 1)27) (v +1) 209

The substitution of m, into eq. (28) gives the equation

dv a-1
— =2(1-a)am
dt ( Jamy

(31)

1 1
1) Z(yany 2 D(e+v+1) (32
(vo+1) % (v+1) T



Taking only the first term in Stirling asymptotic expansion of gamma func-
tion and assuming that & <« v + 1, one gets

T(a+v+1)

T D

Then it is possible to obtain approximate analytical solution of eq. (32) in
the form

V() = T = (1-afa?mg ™ (vy+1)020 ¢2 (33)
and

1-2e

my(t) = iig(t) = md' ™ (vo+1)72¢ [(1 - u)at] 1-w (34)
1
Mo (1) = T (8) = Fig(£) (1) = [(1 - @)az]'™® (26%)
1

M(t) = M(2) = [(1-w)at]'* N, (16*)

2. NUMERICAL ANALYSIS

The presented considerations are illustrated below by some numerical examples.

The calculations are performed for the data given below
a) h(t) = 1, hence H(t) =t,

b) f(m) = am®, where & = 1/3 and a = 0.27076-107% kg¥3-s7\.

The value of a has been used before [5] and had been obtained from Barrett
and Clement formula for a continuum range [1] for the following data: tempera-
ture 100°C, air partial pressure 0.1 MPa, vapour saturation S = 1.01, vapour
molecule sticking probability S, = 0.04 and accommodation coefficients « e =
= a, = 1.0.

1. Some general formulas for characteristics parameters of n(m,t), valid
for any initial distribution ny(m), are derived above. Also some approxirma-
tions of these parameters have been obtained.

It is assumed that the initial distribution starts at m = 0 (i.e. my, = 0) and
attains maximum at the value m = m_,_. The values of m_,_(t) are calculat-
ed from eq. (13) and the approximate values of #__ (¢) form eq. (13*).



We introduce the relative error of the quantity X defined as follows

X -X@)

S 7o

100% (34)

where X and X denote the exact and approximate values, respectively.
The error e(mm) is shown in Fig.1 as a function of time for
= 107! kg, 1078 kg and 1071 kg.

The error e(R) versus time is shown in Fig.2 for m = =102 kg,
107!8 kg and 1071 kg.

The calculations of error e(A mr) are performed for m; =0and m, = m___,
where m_, = 107 kg, 1078 kg and 1075 kg; Am(t) and Am (t) are cal-
culated from eq. (13) and eq. (9*), respectively.

The error e(A mr) versus time is shown in Fig.3.
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2. Two initial distributions are considered, namely log-normal and gamma
distribution, with my, = =107 kg, 107 ¥ kg and 107" kg. The values of M(z) are
calculated from eq. (15), and the values of M(z) are calculated from eq. (16).

The error e(M) for gamma distribution with v, =1 and v, = 3 is shown
in Fig.4, and log-normal distribution with o, =1 and ¢, =3 is shown in
Fig.5.

The parameters v and o as functions of time, for mgy, = 102! kg and
0, = V4 = 3, are shown in Fig.6.



The errors of m,, v and o, for the same values, are shown in Fig.7 (the
errors are defined as above).
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CONCLUSIONS

The investigation of the droplet mass distribution function has been performed
and illustrative calculations have been carried out.

Some general information concerning the time evolution of mo.Am,
and the integral of the droplet mass distribution function can be obtained for
arbitrary mass growth rates.

When for the given condensational mass growth rate the exact analytical
solution exists, then some approximate formulas for the above-mentioned
quantities can be derived.

When the initial distribution is either log-normal or gamma distribution,
then it is possible to use the method of moments for the determination of the
approximate solution. The approximate formulas for parameters of these distri-
butions ensure good accuracy for sufficiently large values of time.

The approximate formulas for m_ . and M are identical with those ob-
tained from exact analytical solutions.
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KONDENSACYJNY WZROST KROPEL

Streszczenie

W pracy prezentowana jest analiza kondensacji pary na kroplach. Ogélne przyblizone wyra-
zenia dla parametréw funkcji rozktadu mas kropel wyprowadza sig¢ z rozwiazania analityczne-
go. Wyrazenia te s stuszne dla szerokiej klasy predkosci wzrostu mas i dowolnych rozktadéw
poczatkowych. Badana jest doktadno§¢ tych wyrazefi i stwierdza sig, ze bledy sa mate. Do
zagadnienia kondensacji stosowana jest metoda momentéw dla rozkladu logarytmiczno-normal-

nego i rozktadu gamma. Wyprowadzane sa przyblizone wzory dla parametréw tych rozkiadéw
i badana jest ich doktadno$é.

KOHIEHCAITAOHHLIN POCT KATIENh

KpaTtkoe comepxXaHHuE

IIpuBomWTCA aHANHM3 KOHAESHCANMH napa Ha Ramwixx. O6imue nprbimxeHase GOpMYyIIbI
I mapaMeTpoB GYBKIIAA DAacOpefeleHWs MacC Kadelbh BBIBOIMATCS H3 AHAIHATHYECKO-
ro peraeHma. Dta GOPMYIBEl NPUATOIHLI LIS HIAPOKOrO KJacca CKOPOCTH POCTa MAacCCHI
Kalledhb H IuS MI0OBIX HAYANBHEIX DacOpefielieHWid. IIpHBOXATCA aHATW3 TOYHOCTH 3THX
dopMyT ¥ OOHAPYKHMBAETCH, YTO MOrPEMIHOCTH Maible. MeToy MOMEHTOB IPHMEHSETCS
IS pelleHds UpobieMbl KOBAEHCATAN Iapa s JoraprdMuiecKH-HOPManbHOTO B TaM-
Ma pacupeneeHuH.

BriBomsarcs OpHONHXEHHBIE GOPMYILI HIS HApPAMETPOB STHX PACIpPENENeHUN K HC-
CIERyeTCsS MX TOYHOCTH.



