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Abstract

The current investigation deals with heat transfer of a non-newtonian fluid between two concentric cylinders. To describe the
behavior of non-Newtonian fluid casson fluid model is used because of its various useful applications. The governing partial
differential equations suchlike continuity, momentum, energy, solute concentration and nano-particle fraction equations are
transubstantiated into non-linear ordinary differential equations with the assistance of resemblance alteration. Then those
are numerically solved by the very efficient shooting method. Additionally, influences of distinct involved parameters are
interpreted graphically. It is adhered that the velocity field shows inclined behavior due to the increment in the values of the
casson parameter, so long as enhancing the temperature.
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1. Introduction

The content matter of non-Newtonian fluid mechanics
have much importance and of great interest in the area of
research particularly technological and industrial problems.
The cases in point to observe in real life are toothpaste,
lava and ice, snow avalanches, tomato sauce and mayon-
naise etc. The flowing attributes of non-Newtonian fluids are
perfectly dissimilar from those of Newtonian fluids. We ad-
here that in the study of non-Newtonian problems, the or-
der of governing equations is higher than the comparable
Newtonian problems. Therefore, one needs the extra bound-
ary conditions to obtain a unique solution. Such type of
issue was interpreted by Malik et al. [1] during the investi-
gation of third grade fluid flow between cylinders. Also the
non-Newtonian fluids have more non-linear equations than
the Newtonian fluids and it was not an easy task to obtain
the numerical solution. Inspite of all these hurdles, various
researches [2–5] put efforts to find out the analytical solu-
tion for non-Newtonian fluids flow. Ramzan et al. [6] exam-
ined MHD non-Newtonian fluid flow over a vertically stretch-
ing sheet. Hussain et al. [7] observed Oldroyd 8-constant
fluid flow between coaxial cylinders with inconsistent viscos-
ity. Rizwan Ul Haq et al. [8] studied numerically the non-
Newtonian fluid flow past over a stretchable surface. Many
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models of non-Newtonian fluids have been suggested like
Maxwell fluid model, Oldroyd-B fluid model, Viscoelastic flu-
ids, Tangent hyperbolic fluid, Williamson fluid, Jeffrey fluid
model, Power law fluid model etc. All these fluids express
the non-linear behavior. M. Hameed et al. [9] observed the
unsteady MHD non-Newtonian fluid flow on a porous plate.

The influence of magnetic field on Magnetohydrodynamic
flow have very much significance and on large scale appli-
cations in many engineering problems. We may observe
such kind of examples as glass manufacturing, purification
of crude oil and geophysics. On account of wideranging mul-
tiple applications in engineering and industrial fields specifi-
cally from petroleum products the ancestry of crude oil, the
investigation of non-newtonian fluids have captivated much
attention of researchers [10–15]. The extension of classi-
cal cauchy stress on the account of non-Newtonian fluid laid
down the foundation of exclusive theories [16–18].

For the classification of non-Newtonian fluids, Casson fluid
has distinguishable attributes. In 1995, Casson presented
this model for the viscoelastic fluids flow. By fuel engineers
this model was cast off in the depiction of glutinous water
mixture of insoluble matter. When only transitional shear rate
data was attainable, it was improved for predicting high shear
rate viscosities.

By power manufacturing, electronics and transportation
the heating and cooling influences are required. For high
energy devices these heating and cooling techniques are
needed. It is very obvious that common fluids have limited
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Figure 1: Geometry of the fluid flow

potential of heat transferring because of their low heat trans-
ferring ability. We observe that some metals have higher
thermal conductivity, seems three or four times than common
fluids. A substance is required which is made by combining
these two fluids, behaving like having higher thermal conduc-
tivity metal as well as a fluid. Nanofluids are such kind of sub-
stances which are made by the suspension of nano particles
into the common fluids. Common fluids are also called base
fluids. A very small quantity of nanoparticles into the com-
mon fluids enlarges the thermal conductivity by 15-40%. The
name of nanofluids was conceived by Choi very first time at
Argonne National laboratory. It can improve the heat transfer
rate as compared to pure liquids. For the better performance
of thermal management system, nanofluids are used. For
example, in engineering field like HVAC system, transporta-
tion, cooling devices and micromechanics. These fluids have
wide range of applications in medical era too, as laser based
surgery and cancer therapy. These are also employed for
large scale cooling in aeroplanes and military systems. M.
Sheikholeslami et al. [19] deliberated the consequences of
heat transfer and thermal radiation on MHD nanofluid flow
using two phase model. A. Zeeshan et al. [20] investigated
MHD and heat transfer effects on CuO–water nanofluid flow.
The influence of mixed convection on the flow of an Eyring-
Powell nanofluid with stretching sheet was investigated by
Malik et al. [21]. Rizwan Ul Haq et al. [22] investigated MHD
squeezed nanofluid flow over a sensor surface.

An unbiased and central aim of the present investigation is
to contemplate the unidimensional interpretation of the cas-
son fluid model arrogant the two concentric cylinders. We
eliminated the system of non-linear partial differential equa-
tions into the system of non-linear ordinary differential equa-
tions by amplification of resemblance alteration. To obtain
the solution of coupled equations which are highly non-linear,
are numerically attempted. We have acquired the solution of
non-linear ordinary coupled differential equations by employ-
ing the shooting method along with R-K technique. Then with
the assistance of graphs the fleshly behavior of each param-
eter is interpreted.

2. Formulation of the problem

We consider the steady state incompressible flow of a cas-
son nanofluid bounded by two concentric cylinders. Follow-
ing figure (Fig. 1) depicts the flow of fluid.

The governing equations for the present flow are given as,

∇.V = 0, (1)

ρ(
∂V
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After solving eqs. (2) - (5), we have
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Where µβ is kinematic viscosity and β is casson fluid pa-
rameter. v is the velocity component along z-direction, ρ
denotes density, p indicates fluid pressure, t denotes time,
T depicts temperature and k denotes thermal conductivity.
C describes solute concentration and φ depicts nanoparticle
fraction.

Boundary conditions are given as,

v(R1) = v1, v(R2) = 0, T (R1) = T1,T (R2) = 0, (10)

C(R1) = C1,C(R2) = 0, φ(R1) = φ1, φ(R2) = 0.

Here T1 is used for Temperature, C1 for solute concentra-
tion, and φ1 for nano particle fraction at inner cylinder. Con-
tinuity equation is obviously satisfied for the given velocity
profile.

3. Non-dimensional equations

We define,
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Where A is thermophoresis parameter, B is Brownian mo-
tion parameter, C is the Dufour-solutal Lewis number and F
is the modified Dufour parameter. In the light of equatin 11,
eqs. 6 - 9 occupy the shape (after dropping the bars),
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, (12)
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and related transformed boundary conditions are

v(1) = 1, v(2) = 0, θ(1) = 1, θ(2) = 0, (16)

ψ(1) = 1, ψ(2) = 0, φ(1) = 1, φ(2) = 0.

4. Solution of the problem

To get ordinary differential equations from the flow arising
governing equations, the suitable similarity transformation is
used. Shooting technique on eqs. 12-16 is used to find out
the solution along with Runge Kutta method. The impact of
different dimensionless quantities on velocity, concentration,
nanoparticle fraction and temperature fields are interpreted
with the assistance of graphs. Runge-Kutta method is one of
the technique that is used to solve the intial value problems.
First of all we transform momentum and energy equations in
first order form i. e,

v′′ =
rP − v′

r(1 + 1
β
)
, (17)

θ′′ = −
θ′ + Bθ′φ′r + Ar(θ′)2 + Frψ′′ + Fψ′

r
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r
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r
.

Now, we define new variables that are applied to reduce
the higher order ordinary differential equations into first order
i. e,

v = r1, v′ = r2, v′′ = r′2, (18)

θ = r3, θ
′ = r4, θ

′′ = r′4,

ψ = r5, ψ
′ = r6, ψ

′′ = r′6,

φ = r7, φ
′ = r8, φ

′′ = r′8.

After putting the new variables, we get the new system of
ordinary differential equations i. e,

Figure 2: Influence of P on velocity profile

r′2 =
rP − r2

r(1 + 1
β
)
, (19)
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r
,
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r
,
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r
.

In accordance with the boundary conditions,

r1(1) = 1, r1(2) = 0, (20)

r3(1) = 1, r3(2) = 0,
r5(1) = 1, r5(2) = 0,
r7(1) = 1, r7(2) = 0.

5. Results and Discussion

In the realm of graphical render, influences of pertinent
parameters on temperature and velocity distributions are dis-
cussed concisely. Fig. 1 demonstrates the physical model of
the concentric cylinders. The behavior of distinct parame-
ters on different profiles are investigated. Fig. 2 depicts the
effects of P on velocity distribution. The velocity distribution
exhibits decreasing behavior due to increment in the values
of P. Fig. 3 delineates the changings in temperature field due
to accumulating thermophoresis parameter A. Temperature
field presents increasing behavior due to rise in A. Fig. 4
points out on temperature distribution the corollary of Brow-
nian motion parameter. The distribution of temperature goes
up because of accelerating B. Fig. 5 displays the effects of
modified Dufour parameter F on temperature distribution. An
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Figure 3: Effects of A on temperature distribution

Figure 4: Inufluence of B upon Temperature field

increase in pertinent parameter F causes increase in tem-
perature distribution. Fig. 6 shows the influence of Dufour-
solutal Lewis number C on concentration field. Fig. 7 ex-
plicates the influence of thermophoresis parameter on nano
fraction profile. Physically increasing values of A shows the
direct variation of paprameter with nanoparticle fraction dis-
tribution. Fig. 8 explains the inverse effects of brownian mo-
tion parameter with nanoparticle profile. Fig. 9 depicts the ef-
fects of modified Dufour parameter F on nanoparticle fraction
distribution. An increase in pertinent parameter F causes
decrease in corresponding profile. For distinct values of A,
figs. 10-12 demonstrate stream lines. Stream lines are going
far from the origin due to intensifying values of A.

Figure 5: Influence of F on temperature profile

Figure 6: Effects of C on concentration profile

6. Conclusions

In prevailing investigation the effects of casson nanofluid
flow between the two concentric cylinders are interpreted.
Numerical results are obtained through governing equations.
The obtained results satisfy the boundary conditions and the
governing equations obviously. The impact of distinct param-
eters are also interpreted. Physically, an increasing value
of thermophoresis parameter causes the enhancement of
nanoparticle concentration. Some magnificent points of
present investigation are summarized below:

1. The velocity field decreases due to the effect of increas-
ing values of the casson parameter.

2. Due to having higher thermal conductivity, nanofluids
are better coolants than their base fluid.

3. Temperature field represents inclination because of rise
in Thermophoresis parameter and accumulating due to
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Figure 7: Nano particle fraction distribution for variation in A

Figure 8: Nano particle fraction for variation in B

acceleration in the values of Brownian motion parame-
ter and Dufour-solutal lewis number.

4. Temperature gains a higher value than the mass fraction
and nano particle concentration. The Dufour effects are
inverse effects of thermophoresis. It is due to the ad-
dition of solid particle that causes the weaker molecu-
lar diffusivity which decays the concentration boundary
layer thickness.

5. Stream lines illustrates the shrinking behavior when de-
creasing values for v(r).
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